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Abstract

This study aims at (i) providing improved understanding of the vertical heat exchange in shallow
lakes with intermittent thermal stratification and (ii) developing of a computationally inexpensive
model, which should take into account general mechanisms of vertical heat exchange in a lake.
A special attention is paid to parameterization of the turbulent exchange in the thermocline: the
strongly stratified layer developing below the upper mixed layer. In addition, the mechanisms of
stratification formation are considered with account of the vertically distributed absorption of the
solar radiation within the upper water column, and possible influence of biological production
on the thermal budget in a lake is analyzed.

The concept of self-similarity of the thermocline is used for parameterization of the vertical
heat exchange in stratified media. A new self-similarity function is proposed based on solution of
the heat transfer equation in one-dimensional form in propagating wave form. The temperature
gradient at the thermocline bottom is included into the governing parameters extending applica-
bility of the self-similarity description on wider class of natural processes including boundary
layer development in stably stratified atmosphere and mixed layer deepening in shallow lakes.

A one-dimensional model of temperature evolution in lakes is developed. The self-similar de-
scription of the thermocline allows achieving a fully parameterized, computationally inexpensive
algorithm that make it possible to use the model in various environmental applications including
ecological modeling and numerical weather predictions.

The model is tested against observations in the Lake Müggelsee, Berlin. Thermal regime of
the lake during summer periods of 1980-1996 is modeled, general mechanisms of the tempera-
ture structure formation in a shallow polymictic lake are discussed, the role of water transparency
variability is analyzed.

Convection driven by solar radiation absorption is considered in frames of the bulk mixed
layer approach. The radiatively-driven convection proper only for fresh-water lakes in late winter
represents a rare natural example of purely convective mixing providing a good test case for
mixed layer scaling. A mixed layer model including the effect of salt concentration on stability
is developed and applied to a number of temperate and polar lakes. The similarity of the turbulent
kinetic energy and dissipation rate profiles within the convective mixed layer is demonstrated,
the influence of very small salt concentrations on vertical mixing at temperatures close to the
maximum density value is discussed.
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Modellierung des vertikalen Wärmeaustausches in Flachseen
Zusammenfassung zur Dissertation

Zielstellung und Methoden. Diese Arbeit hat zum Ziel (i) ein erweitertes Verständnis des ver-
tikalen Wärmeaustausches in Flachseen mit intermittierender thermischer Schichtung zur Verfü-
gung zu stellen sowie (ii ) ein wenig Rechenkapazität beanspruchendes Modell zu entwickeln,
welches die generellen Mechanismen des vertikalen Wärmeaustausches in Seen berücksichtigt.
Besondere Aufmerksamkeit wird der Parametrisierung des turbulenten Austauschs innerhalb der
Sprungschicht – der stabilen Schicht, die sich unterhalb der oberen, durchmischten Zone ent-
wickelt – gewidmet. Außerdem werden die Mechanismen der Schichtungsbildung mit Blick
auf die vertikale Absorptionsverteilung der Sonnenstrahlung im oberen Wasserkörper sowie der
möglichen Einfluss der biologischen Primärproduktion auf den Wärmehaushalt des Sees ana-
lysiert. Eine weitere Fragestellung dieser Arbeit betrifft die Vorhersagbarkeit kurzer Schich-
tungsereignisse, die sich mit Perioden vertikaler Homogenität abwechseln. Diese sogenannte
“Polymixis” ist typisch für Flachseen in Sommern gemäßigter Zonen.

Eine eindimensionale, über die Horizontale gemittelte Darstellung eines Sees wurde als
Grundlage für die Modellentwicklung gewählt. Das Konzept der Selbstähnlichkeit der Sprungs-
chicht wird für die Parametrisierung des vertikalen Wärmeaustausches im geschichteten Teil
des Wasserkörpers benutzt. Eine neue Selbstänlichkeitsfunktion wird in der vorliegenden Ar-
beit vorgeschlagen. Sie basiert auf der Lösung der Wärmetransportgleichung einer sich nach
unten ausbreitenden Welle. Der Temperaturgradient am Boden der Sprungschicht wird dabei als
ein wesentlich bestimmender Parameter mit einbezogen. Dieser Schritt öffnet die Anwendbar-
keit des Konzepts der Selbstähnlichkeit für die Beschreibung anderer natürliche Prozesse, wie
zum Beispiel die Entwicklung von Grenzschichten in stabil geschichteter Atmosphäre oder die
Vertiefung der durchmischten Zone in Flachseen.

Selbstähnlichkeitsanalyse des Temperaturprofils in der Sprungschicht. Das Konzept der
Selbstähnlichkeit der Sprungschicht wird diskutiert und der physikalische Hintergrund der Selb-
stähnlichkeitshypothese analysiert. Dabei wird gezeigt, dass die Selbstähnlichkeit des Tempera-
turprofils sich äquivalent zu der Lösung einer sich fortbewegenden Welle in der eindimensionalen
Wärmetransportgleichung verhält (Kirillin, 2001a).

Die Lösung wird unter Berücksichtigung der Schichtungsverhältnisse unterhalb der Sprungs-
chicht erreicht. Sie erweitert die Anwendbarkeit des Selbstähnlichkeitsprinzips der Sprungs-
chicht auf eine Reihe von geophysikalischen Strömungen, einschließlich Flachseen, konvektiven
Grenzschichten in der Atmosphäre und jahreszeitlich bedingten Sprungschichten in Ozeanen. In
nicht-turbulenten Fluiden werden die unterhalb der Sprungschicht liegenden Schichtungsverhält-
nisse durch die Berücksichtigung eines dimensionslosen Temperaturgradienten am Boden der
Sprungschicht mit in die Lösung einbezogen. Dies erlaubt eine Variation der Form des Tempe-
raturprofils innerhalb der Sprungschicht, insbesondere die Annäherung an einen asymptotischen
Temperatursprung am Boden der oberen durchmischten Schicht.

Die vorgestellte Lösung verallgemeinert bisher vorgeschlagene empirische Beschreibungen
des Temperaturprofils in der Sprungschicht. Das von ihr resultierende Profil des turbulenten Wär-
metransports zeigt das direkte Verhältnis zwischen Mischungsintensität und potentieller Energie.
Dies liegt in Übereinstimmung mit der Theorie über die durch das Brechen interner Wellen an-
getriebene Mischung in geschichteten Fluiden (Kantha, 1977).

Der Lösungsansatz wird anhand von Beobachtungen in Ozeanen, der Erd- und Marsatmo-
sphäre, Laboruntersuchungen und Messungen in Seen überprüft (Kirillin, 2001b). Die vertikale
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Ausdehnung der natürlichen Prozesse variiert von einigen Metern zu mehreren 10 Kilometern.
Werden diese jedoch mit der in dieser Arbeit vorgeschlagenen dimensionslosen Variablen ska-
liert, so gruppieren sich alle Temperaturprofile um die Kurve, die sich aus dem vorgeschlagenen
Lösungsansatz ergibt.

Die Beschreibung des Temperaturprofils mit dem Konzept der Selbstähnlichkeit ermöglicht
es, Ansätze der “bulk”-Modellierung analog zur Modellierung gemischter Zonen auf geschich-
teten Teil des Wasserkörpers anzuwenden. Die Tatsache, dass der Wärmetransport am Boden
der Sprungschicht mit in das Modell einbezogen wird, erlaubt die Berücksichtigung dieser Be-
ziehung in der Modellierung von Flachseen, in denen der Wärmefluss an der Wasser-Sediment
Grenzschicht beträchtlich sein kann, sowie in der Modellierung von Konvektionen, die von star-
ken Inversionen in der konvektiven Grenzschicht der Atmosphäre überdeckt sind.

Das Modell über die Temperaturentwicklung in Seen. Das Modell der jahreszeitlichen Tem-
peraturentwicklung in Seen wurde unter Verwendung des Quellenkodes sowie des generellen
Konzepts des TeMix-Modells abgeleitet (Mironovet al. , 1991). Das Modell verwendet eine
Zwei-Schichten-Darstellung des Temperaturprofils, welche auf dem Lösungsansatz der Selbst-
ähnlichkeit beruht.

Im Gegensatz zum bisherigen TeMix-Algorithmus wird eine durch Sonneneinstrahlung ver-
ursachte differntielle Erwärmung der Wasserschicht berücksichtigt. Dies verbessert die Modell-
vorhersagen entscheidend, insbesondere unter den in Flachseen vorherrschenden Bedingungen.

Die Leistungsfähigkeit des Modells wird anhand von Daten des Müggelsees (Driescheret al.
, 1993) untersucht. Ein Vergleich zwischen den Modellergebnissen und den gemachten Beob-
achtungen zeigt, dass das Modell den vertikalen Temperaturverlauf in Flachseen ausreichend gut
voraussagt. Die Modellberechnungen für die Sommer der Jahre 1980-1996 erlaubten die De-
tektion von zu hohen Messwerten der Sonneneinstrahlung auf der Seeoberfläche in den Jahren
1980-1989. Dies demonstriert die Sensitivität des Modells in Abhängigkeit von der Qualität der
Eingangsdaten und bestätigt die Zuverlässigkeit der Modellvorhersagen.

Ein Vergleich der Modellergebnisse mit denen von Zweigleichungssystem basierten Turbu-
lenzmodellen wurde durchgeführt. Vorhersagen über die Tiefe der durchmischten Zone des in
dieser Arbeit vorgeschlagenen Modells liegen in guter Übereinstimmung mit der vertikalen Tur-
bulenzstruktur, wie sie dask-ε-Modell vorhersagt. Gleichzeitig liefert der dem TeMix-Modell
zu Grunde liegende “bulk”-Algorithmus bessere Ergebnisse der Oberflächentemperatur in Flach-
seen als die desk-ε- und des Mellor-Yamada-Modells. Letztere zeigen große numerische Insta-
bilität, wenn sie für flache Wasserkörper mit an der Oberfläche stark variierenden Wärmeflüssen
angewendet werden. Diese Tatsache sowie die hohen rechentechnischen Anforderungen machen
die praktische Anwendung der Zweigleichungs-Turbulenzmodelle in ökologischen und meteo-
rologischen Fragestellungen, wo die Vorhersage der thermalen Struktur in Flachseen notwendig
ist, schwierig. Das TeMix-Modell weist im Gegensatz dazu keine Limitierungen auf, da hier
adäquate Vorhersagen mit geringen Rechenanforferungen miteinander verbunden sind.

Das Modell sagt recht gut die jahreszeitlichen sowie die zwischenjährlichen thermischen
Schwankungen – inklusive Schichtungsbildung und -zerstörung – in einem polymiktischen See
voraus. Die Outputcharakteristiken des Modells – die Durchschnittstemperatur, die Tiefe und die
Temperatur der oberen durchmischten Zone – liefern ausreichende Informationen für vielfältige
Anwendungen im Bereich der Seenphysik.

Die Rolle der Variabilität der Lichtdurchlässigkeit des Wassers im Wärmehaushalt eines
Flachsees wird anhand von Modellergebnissen und Beobachtungsdaten des Müggelsees unter-
sucht. Es wurde herausgefunden, dass in Sommermonaten mit geringer mittlerer Windgeschwin-
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digkeit, die Variationen der Oberflächentemperatur mit der Lichtextinktion des Seewassers kor-
reliert. Eine kann folglich ein Einfluss des Algenwachstums auf die Seetemperatur vermutet
werden.

Die Konvektion in Eis bedeckten Seen. Die typischen Mischungsverhältnisse unterhalb der
Eisschicht als Resultat von Konvektion werden analysiert (Mironovet al. , 2002). Es wird ge-
zeigt, dass die für die Beschreibung der Wärmefluss induzierten Konvektion in der Atmosphäre
und in Ozeanen geeigneteGleichung des Turbulenten Entrainments, auch für Konvektionen un-
terhalb der Eisschicht von Seen angewendet werden kann. Dies gilt allerdings nur unter der
Voraussetzung, dass die auf dem oberflächennahen Wärmefluss basierende Deardorff-Skala für
die Konvektionsgeschwindigkeit durch eine geeignete Skala ersetzt wird, die den Charakter der
vertikal verteilten Strahlungswärme berücksichtigt.

Ein “bulk”-Modell wird für die durchmischte Zone angewendet, um eine sich in die Tiefe aus-
breitende konvektiv durchmischte Zone zu simulieren. Das Modell verwendet das Konzept der
Selbstähnlichkeit für die Darstellung des sich entwickelnden Temperaturprofils. Eine stationäre
Lösung der Wärmetransportgleichung wird verwendet, um die Struktur der stabil geschichteten
Zone unterhalb der Eisoberfläche zu beschreiben. Die Skalierung der durchmischten Zone und
die über die durchmischte Zone integrierte Bilanzgleichung für die turbulente kinetische Energie
werden für die Ableitung derGleichung des Entrainmentsbenutzt. Die auf dieser Basis erlang-
ten Modellvorhersagen stimmen gut mit Beobachtungsdaten von sowohl in gemäßigten als auch
in polaren Klimazonen gelegenen Seen überein.

Eine Erweiterung des für die durchmischte Zone entwickelten Modells auf Salzwasser wird
vorgeschlagen und anhand von Beobachtungsdaten geprüft (Kirillinet al. , 2001). Obwohl der
Salzgehalt in den meisten Seen der gemäßigten und polaren Klimazonen sehr gering ist, kann
er bei Temperaturen um das Dichtemaximum signifikanten Einfluss auf die Dynamik ausüben.
Unter Bedingungen von mit zunehmender Tiefe steigenden Temperaturen und mit dem Über-
steigen der Temperatur des Dichtemaximums in der Bodenschicht wäre die Wassersäule einer
konvektiven Umkehrströmung ausgesetzt. Das ist jedoch nicht der Fall, wenn der Salzgehalt mit
der Tiefe ansteigt und damit für statische Bedingungen sorgt.

Strahlungsinduzierte Konvektion in Eis bedeckten Seen bietet ein nahezu ideales Testgebiet
für die Anwendung von Turbulenzmodellen. Wie bereits von Farmer (1975) beschrieben, han-
delt es sich hierbei um ein seltenes Beispiel geophysikalischer Konvektionsströmung, bei der
keine bedeutende Scherung auftritt. Dies bedeutet eine Vereinfachung von besonderem Wert bei
Untersuchungen von Gravitationsinstabilitäten und ihren Konsequenzen. Datensätze, die durch
Turbulenz- und Temperaturmessungen in der konvektiven Grenzschicht unterhalb des Eises und
durch Simulation von großen Strudeln gewonnen werden, können benutzt werden, um turbulente
Konvektionsströmungsmodelle zu testen und weiter zu entwickeln.

Praktische Anwendungen. Eine Integration des hier vorgestellten Modells in ein Ökosystem-
modell von Flachseen (Schellenbergeret al., 1983) ist eine folgerichtige Erweiterung der vorlie-
genden Arbeit. Eine wesentliche Verbesserung der Vorhersagen der ökologischen Komponenten
kann bei Einbeziehung der vertikalen Temperaturschichtung erwartet werden (Denman & Gar-
gett, 1983). Die Tiefe der durchmischten Zone ist die Skala, welche die vertikale Verteilung des
Seeplanktons und die Biomasseproduktion bestimmt. Das Schichtungsregime bestimmt auch
die externe und interne Nährstofffracht, und somit den trophischen Zustand des Sees (Golosov
& Kirillin, 2000).

Die hier vorgestellte parametrisierte Beschreibung der vertikalen Temperaturverteilung kann
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ebenso in zwei- und dreidimensionalen Zirkulationsmodellen verwendet werden, insbesondere
wenn eine vereinfachte jedoch physikalisch solide Parametrisierung des vertikalen Transports
erwünscht ist. Dieses wurde zum Beispiel von Kirillinet al. (1998) anhand der Modellierung
von ufernahen Strömungen in großen Seen untersucht.

Seen verändern die Struktur und Transporteigenschaften der oberen Atmosphärenschicht.
Diese Problemstellung wurde zwar bisher noch nicht ausreichend beschrieben, jedoch in den
meisten numerischen Ansätzen Umwelt bezogener Modellanwendungen, insbesondere in nume-
rischen Wettervorhersage- und Klimamodellen, wird der von Seen ausgehende Effekt entweder
vollständig ignoriert oder nur äußerst primitiv in die Parametrisierung mit einbezogen. Folglich
wird ein Seenmodell für Umwelt bezogene Anwendungen benötigt, das einerseits physikalisch
solide ist, jedoch anderseits Computerresourcen effizient nutzt. Mit dem in dieser Arbeit vor-
geschlagenen Modellansatz, der sich das Prinzip der Selbstähnlichkeit des Temperaturprofils in
der Sprungschicht zur Beschreibung der Schichtungsstruktur zwischen der oberen durchmisch-
ten Zone und dem Beckenboden zu Nutze macht, kann ein vernünftiger Kompromiss zwischen
physikalischer Realität und Rechenökonomie erreicht werden.
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Chapter 1

Introduction

1.1 Objectives and scope of the study

The subject of the study are the physical processes of heat and mass exchange in shallow lakes.
There is a number of reasons stimulating our interest to the shallow lakes dynamics. Some of
them are listed below.

• Physical background for ecological modeling.

Modeling aquatic ecosystems is a rapidly growing branch of ecological science. A large
number of small freshwater lakes is located in highly urbanized areas and undergoes strong
anthropogenic impact. Their small spatial scales provide relatively fast response to this
impact followed by ecological equilibrium disturbance. Scenarios of ecological changes
need adequate description of main physical processes in a lake, which processes determine
in many ways the behavior of lake ecosystems.

• Climate modeling and numerical weather prediction.

In most numerical modeling systems for environmental applications, most notably numer-
ical weather prediction (NWP) and climate modeling (CM) systems, the effect of small-to-
medium size lakes is either entirely ignored or is parameterized very crudely. The problem
urgently calls for further investigation, in particular, due to the increase of the horizontal
resolution of models. Such increase is envisaged for most NWP systems in the near future.
Then, a physically realistic and at the same time computationally cheap model is required
to predict the evolution of the heat exchange at the air-lake interface.

• Lake as a model of the ocean.

When Forel (1892) introduced the termlimnology, he classified this science asl’océano-
graphie des lacs: the oceanography of lakes. Lakes as dynamical systems are less compli-
cated than oceans or the atmosphere and monitoring of physical processes can be carried
out here at relatively low cost. In this sense, a lake can be considered as taking an interme-
diate place between laboratory models and the global atmosphere-ocean system, allowing
us to distinguish general physical principles of the geophysical fluid dynamics. Significant
progress in limnology is clearly marked as one of the first priorities in future development
of physical oceanography:

Lakes can be useful analogs of the ocean, with wind and thermally driven circu-
lations, developing coastal fronts, and topographically steered currents. Lakes

3



4 CHAPTER 1. INTRODUCTION

are important as model ecosystems which are simpler and more accessible than
ocean ecosystems. Significant progress can be foreseen in the coming decades
in limnology, helped by the tools and ideas developed for the ocean. (Royer &
Young, 1997)

When considering a lake as a physical model of the ocean, one can expect lake data to present
additional information about vertical turbulent transport in stratified media, whose characteristics
and origin in the ocean are still not clearly defined (Webb & Suginohara, 2001).

Among the physical factors determining biological processes in lake ecosystems, the vertical
mixing conditions are of the first importance (Denman & Gargett, 1983). On the other hand,
ecosystem modeling involves parameterization of a number of biological and chemical interac-
tions that usually leaves no room for detailed description of lake physics. At once simple and
physically sound algorithms are required, linking the biological processes with overall physical
characteristics.

Integration of sophisticated models of lake dynamics into NWP systems is also rarely possi-
ble on account of high computational requirements of latter. Nonetheless, an adequate prediction
of vertical stratification in a lake can lead to essential improvement of heat and mass exchange
estimation at the air-lake interface.

Based on these considerations, the main goal of this work is formulated as development of
a computationally inexpensive model, which should take into account general mechanisms of
vertical heat exchange in a lake. A special attention is paid to parameterization of the turbulent
exchange in the thermocline: the strongly stratified layer developing below the upper mixed
layer. In addition, the mechanisms of stratification formation are considered with account of
the vertically distributed absorption of the solar radiation within the upper water column, and
possible influence of biological production on the thermal budget in a lake is analyzed. Another
question to consider is predictability of short stratification events alternating with periods of
vertical homogeneity (so-calledpolymixisphenomenon), which is typical for temperate shallow
lakes in summer. Destroying of the vertical temperature stratification leads to enrichment of the
upper photosynthetically active layer by nutrients from the sediments and determines in this way
the primary production in a lake. Thus, an estimation of ecological changes in shallow lakes is
impossible without adequate description of the polymixis, which can be achieved in its turn from
one-dimensional modeling of the vertical temperature structure in a lake.

1.2 General approaches and methods

The one-dimensional, horizontally averaged representation of a lake is used here as the back-
ground for the model development. The scales of horizontal movements in a lake exceed in
several orders the vertical ones, providing relatively homogeneous distribution of main charac-
teristics across a lake. At the same time, the vertical exchange is arrested by the stratification
occurring due to gravitational forces. That makes possible considering a lake as a horizontally
mixed water column, where the energy exchange appears only in vertical direction or, to be
meticulous, parallel to the Earth gravitation vector.

The applicability of the one-dimensional approximation to an individual lake can be limited
due to additional horizontal inhomogeneity introduced by interaction of external forces and lake
morphometry. Horizontal variability in atmospheric forcing, river in- and outflow and wind-
driven upwelling of deep water in coastal areas are usually declared as the main sources of such
inhomogeneity. None of these effects, however, will introduce horizontal inhomogeneity in a
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temperature field until the density distribution is uniform in the lake and inflows. The aforemen-
tioned mechanisms should be considered in interaction with the vertical density stratification,
formed in freshwater lakes by radiative heating and by the heat input at the lake-atmosphere in-
terface. Wind mixing and convective mixing driven by surface cooling, destroy, in their turn,
the stratification in the upper part of a lake leading to formation of the upper mixed layer.
Hence, a simple criterion, indicating whether this vertical structure develops in a lake or it is
fully mixed vertically, can be achieved from comparison of the lake’s depth with a characteristic
scale for mixed layer thickness. Theupperestimation for the mixing depth is theEckman depth:
he = 0.3u∗/f , whereu∗ is the momentum flux at the lake surface andf is the Coriolis parameter.
The estimation is rough since the constant 0.3 is derived for open waters and does not take into
account the fetch influence, and the Eckman formula does not include stabilization by vertical
stratification and by surface heating and dissipation of the wind energy at coastal slopes. In re-
ality, wind mixing will occupy much shallower layer at the surface. The depth of wind-driven
mixed layer in case of stabilizing surface buoyancy flux can be estimated from a typical value of
the Monin-Obukhov length scale, modified for taking into account the volumetric absorption of
the incoming short-wave solar radiationI0 within the water column.

l =
ρCpu

3
∗

αg[Qs + I0(1 − (1 − e−γD)/γD)]
, (1.1)

whereγ is the light extinction coefficient andα andCp are the thermal expansion coefficient
and the specific heat of water, correspondingly. The mixed layer depth can be then estimated as
hl = 0.2l and, given the characteristic lake depthD, the stratification criterion can be written:

hmix/D < 1, hmix = min(hl, he). (1.2)

When the condition holds true, a two-layered vertical structure develops in a lake, where the well-
mixed upper layer is separated from the stratified lower part by a density front - the pycnocline.
Under wind drag forcing, the declination of the pycnocline takes place counterbalancing the
slope of the lake surface that introduces horizontal inhomogeneity in the density distribution.
At strong winds the pycnocline can climb to the lake’s surface at the upwind shore resulting in
upwelling of deep water and in formation of horizontal density front at the surface. A criterion
characterizing the balance between the wind drag and the slope of the thermocline resulting
from it can be written in form of theWedderburn NumberW as it introduced by Thompson &
Imberger (1980):

W = g′h2
mix/(u2

∗L), (1.3)

with g′ = g∆ρ/ρ0 is the reduced gravity,∆ρ is the density jump across the pycnocline,ρ0 is the
reference density, andL is the characteristic horizontal length scale of the lake. IfW < 1 than
the pycnocline will surface at the upwind end, and resulting longitudinal inhomogeneity should
be generally taken into account. It is clear that the lake’s morphometry will strongly influence the
inclination of the pycnocline. A criterion, similar to the Wedderburn Number but incorporating
the stability of the water column atz’s horizonSt = ρ−1

0

∫ D
0

(hV −z)gρA(z)dz (Schmidt, 1915),
was introduced by Imberger & Patterson (1990) as theLake NumberLN :

LN =
hmixSt

u2∗(D − hV )A
3/2
S

, (1.4)

where,A(z) is the lake’s area at the depthz, AS is that at the lake’s surface,hV is the height of
the center of the volume. As for the Wedderburn Number, the critical value ofLN = 1 indicates
the transition to horizontally inhomogeneous state.
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Another important mechanism potentially producing essential horizontal temperature gra-
dients is the throughflow. Again, as in case of wind circulation, the degree of inhomogeneity
introduced by a river inflow will be determined by the density stratification, which can be ex-
pressed here as the density difference between the lake water and the inflow. Its influence can be
expressed in terms of the internalFroude number:

Fr =
V

(g′D)1/2
, (1.5)

whereV is the inflow velocity, and the reduced gravityg′ is based now on the difference between
inflow and surface densities. The number represents the relationship between inertial forces of
the inflow and pressure gradient forces on account of density difference. Thus, ifFr < 1, the
pressure forces dominate and lead normally to fast adjustment of gradients in vicinity of inflow
area. If, however, the river density is higher than that of the lake surface, the inflow can plunge to
a depth of zero density difference, where it leaves the lake bottom and propagates further along
isopycnal surfaces, forming so-called intrusive flow and leading to local inhomogeneities. A
discussion on intrusions in lakes can be found in (Imberger & Hamblin, 1982). In caseFr > 1,
the inertial forces can potentially destroy the one-dimensional structure in the lake. Imberger &
Hamblin (1982) have proposed themodified Wedderburn Numberfor estimation of introduced
inhomogeneity in form:

W̃ =
g′D2

V 2L
, (1.6)

where term definitions are the same as in (1.5). SmallW̃ lead to an active mixing by inflow
with longitudinal density gradients. At largẽW the situation stays close to one-dimensional. A
similar criterion was derived by Jirka & Watanabe (1980) named thePond Number, which can
be written in our terms as:

Pn = C
u2
∗L

g′D2
= C

D

L
Fr2

∗ = C W̃−1
∗ . (1.7)

Here,u∗ is the friction velocity at the bottom of the mixed layer and the coefficientC describes
damping of the inflow velocity on account of the entrainment at the density interface.

In some cases, wind mixing can be complicated by configuration of a lake: presence of
sidearms, shadowed areas etc. The heating and cooling processes, in their turn, can be influenced
by variations in lake depth. Thus, the shallow coastal zone cools at night to a lower temperature
than that in the deeper interior that results in convective mixing at sloping bottom and introduces
additional vertical mixing mechanism. A faster heating of sidearms and coastal areas during
the daytime can also lead to the horizontal density gradient formation in a lake. The following
criterion was proposed by Imberger (2001) for estimation of littoral flushing driven by night
cooling of lake waters, balancing the gravitational flow along a bottom slope and the convective
mixing:

CV = (b L)−1/3 D

L tanφTc
, (1.8)

where,b = (Cp ρ)−1gαQs is the convective buoyancy flux at the surface,φ is the bottom slope
andTc is the time scale of the night convective period. IfCV < 1 then the littoral zone will be
flushed during the night cooling period. IfCV > 1 no essential water exchange appears.
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Thus, in order to justify the application of the 1-dimensional approximation to a stratified
lake, one should perform an analysis of the balance between stratification and disturbing forces
with help of the criteria (1.1-1.8). When a lake is fully mixed vertically, horizontal variations in
the wind field and in the surface heat exchange remain the only inhomogeneity sources. These
are usually small in lakes with horizontal scales less than the synoptical scales in the atmosphere.
Hence, one can neglect these variations for lakes with horizontal size� 50km., which are the
majority of lakes on the Earth. This estimation can be also applied approximately to all polymic-
tic lakes, which have being fully mixed vertically at least once during the summer and where
no seasonal thermocline exists in the strict sense. Moreover, if we exclude from consideration
diurnal oscillations, all variations associated with diurnal cycle in a lake can be parameterized
as subscale processes in frames of the one-dimensional approach when modeling the seasonal
evolution of lake temperature. A simple estimation of one-dimensional approximation appli-
cability based on time scales of processes under investigation can be achieved from following
considerations. The temporal scales of physical processes in natural waters are known to be in
a certain relationship to the spatial scales (Kamenkovichet al. , 1987): phenomena with larger
spatial dimensions appear to have also longer duration (Fig. 1.1). The particular case represent
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Figure 1.1: Time and space scales typical for physical processes in natural water bodies and
applicability domain of one-dimensional horizontally averaged lake models.

wave motions, which are essentially non-local and can transport the energy far away from its
source. In their turn, the spatial extension of the motions in a lake is limited by lake’s horizontal
dimensions. Thus, all oscillations with essentially large temporal scales can be related as oc-
cupying the whole lake, making the one-dimensional representation of the lake well-grounded.
With a good accuracy, we can assume all oscillations with temporal scales larger than diurnal
ones to have the one-dimensional nature in lakes with horizontal dimensions 1-10 km. Thereby,
we exclude diurnal variations from consideration and operate with daily averaged characteristics
when applying a one-dimensional model to lake dynamics.
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Two approaches to one-dimensional lake modeling are commonly used nowadays. The prin-
cipal difference between them consists in the way of vertical turbulent exchange representation.
Theturbulence closure models(Mellor & Yamada, 1974; Rodi, 1987) are based on local closure
of the Reynolds-averaged motion equations using fickian analogy for turbulent mixing parame-
terization and empirical hypotheses about vertical profiles of higher turbulent moments to deter-
mine profiles of turbulent exchange coefficients. The models are relative cumbersome and the
underlying parameterizations have ambiguous physical meaning.

The bulk-modelsare based on vertically integrated budget of heat and momentum within a
certain layer arrived in assumption of temperature and velocity profiles in the layer be known.
The most widely used kind of these models are mixed-layer models applied to upper layers of
lakes and oceans (Gill & Turner, 1976; Niiler & Kraus, 1977) assuming homogeneous verti-
cal temperature distribution there and approximating the underlying thermocline by temperature
jump at the mixed layer base. Additional hypotheses about similarity of turbulence character-
istics within the Upper Mixed Layer (UML) allow arriving at theentrainment equationfor the
UML depth evolution, which equation is a vertically integrated form of turbulent kinetic energy
(TKE) budget within the UML. The similarity of the TKE and of the TKE dissipation rate pro-
files within the UML is reported in numerous laboratory and field studies (see Zilitinkevich 1987
for review) and will be also tested in the current work on observational and large-eddy simu-
lation (LES) data for radiatively-driven convection in ice-covered lakes. The hypothesis about
self-similarity of vertical profiles of main characteristics can be also extended on the stably strat-
ified thermocline underlying the UML (Barenblatt, 1996). The essence of the concept consist
of representation of vertical temperature profile under the mixed layer by an universal function
of depth. In couple with upper mixed layer approach, it allows achieving two-layered entirely
parameterized temperature representation that excludes the vertical heat conductivity coefficient
from a model and reduces computational costs to a minimum conserving the physical soundness
of a model.

Existing approaches to self-similar description of the thermocline are summarized here and
underlying physical mechanisms are analyzed. The analysis has allowed arriving at the solution
of the vertical heat transport equation within the thermocline in terms of dimensionless simila-
rity variables: the non-dimensional thermocline depth and the temperature jump across it. The
solution generalize a number of previously proposed empirical approximations and gives a theo-
retical explanation of the observed self-similarity. It allows also taking into account stratification
in non-turbulent quiescent water underlying the thermocline by means of dimensionless tem-
perature gradient at the thermocline base, that extends the scope of application on wider range
of geophysical phenomena including the convective boundary layer (CBL) development in the
atmosphere and the thermocline on lakes where the near-bottom temperature gradients are not
negligible. The solution is tested against observational data from lakes. Furthermore, data from
the Ocean, the Earth and the Mars atmospheres are compared with the proposed model, revealing
the good adequacy of the model in the wide range of spatial and temporal scales and justifying
the validity of proposed scaling. Finally, we incorporate the achieved solution into a bulk-model
of seasonal temperature evolution in a lake.

The model of seasonal temperature evolution in a lakeTeMix (TEmperature and MIXing)
(Mironov et al., 1991) is used here as the basis for development of the current model. The model
is also based on two-layered self-similar representation of the temperature profile but make use
of empirical temperature profile approximation within the thermocline and does not take into
account the vertically distributed absorption of the solar radiation in the water column. We re-
derive the model equations with account of the new solution paying the particular attention to
the entrainment equation derivation with account of volumetric radiation absorption.
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The model is tested on lake temperature data for 16 years collected in the Lake Müggel-
see. The Lake Müggelsee is located near Berlin, Germany. The comprehensive monitoring have
been performed in the lake by the Institute of Water Ecology and Inland Fisheries (IGB) during
last 20 years and includes a set of hydrological and meteorological parameters allowing to trace
medium-scale variations and long-term trends in thermal regime of the lake.

The model displays a good agreement with observational data allowing us to estimate the
validity of underlying approximations for shallow conditions. The comparison of the model
performance with turbulence closure models is also performed. Despite the high level of formal-
ization inTeMix description of the turbulent mixing processes, the model predicts the vertical
temperature profile in a lake quite well and its results are comparable with those given by more
sophisticated but computationally more expensive turbulent closure models.

The role of vertically distributed heating in the heat budget of shallow lakes is analyzed based
on modeling results and on measurements data from the the Lake Müggelsee. Finally, a special
case of radiatively-driven convection in ice-covered lakes is considered in more detail. The
phenomenon exists only in fresh-water lakes and provides an excellent example for testing the
hypothesis about similarity of turbulence characteristics profiles within the convectively-driven
mixed layer.

The study includes following main steps.

• Analysis of thermocline self-similarity concept including overview of previous studies,
theoretical analysis of the thermocline’s self-similarity and development of improved pa-
rameterizations of vertical heat exchange mechanisms.

• Development of a new model scheme based on new parameterizations.

• Analysis of main mechanisms governing the heat exchange in a shallow lake and trends in
air-lake interaction based on the Lake Müggelsee data collected in the IGB during 1980-
1996. Verification of the current version of theTeMix model on these data.

• Application of the bulk mixed layer model to the convection under ice.

1.3 Structure of the thesis

The thesis is divided into the following parts:

• The present chapter, where the problem is formulated and general solution methods are
proposed.

• Chapter 2 includes formulation of the self-similarity concept; review of previous stud-
ies dedicated to the concept application; solution of the vertical heat transfer equation in
dimensionless variables providing the self-similar thermocline representation and compar-
ison of the solution with observational data.

• Chapter 3 contains description of theTeMix model. Results achieved in the previous
chapter are used here in derivation of the model equations. The entrainment equation
is derived accounting for the vertically distributed radiation absorption within the water
column.
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• Chapter 4 is dedicated to application of the model to the Lake Müggelsee. The model
performance is analyzed here by comparison with observations and with results of two-
equationalk-ε model. General characteristics of vertical heat exchange in a shallow lake
are discussed here based on modeling results and observational data. The role of the wa-
ter transparency in heat budget is analyzed and the possible feedback between biological
production and water temperature is discussed.

• Chapter 5: The convection in ice-covered lakes is considered here in terms of mixed-layer
modeling; general description of the phenomenon is given; previous studies are reviewed;
the mixed layer model is developed and tested against data from different lakes; the role of
small salt concentration in vertical mixing at temperatures close to the maximum density
value is discussed.

• Chapter 6 presents an overview of achieved results. Conclusions are made about adequacy
of bulk modeling for shallow lake conditions. Possible practical applications and possible
improvements of the model are discussed.



Chapter 2

Self-similarity of the thermocline

2.1 The concept formulation and overview of previous studies

As it was mentioned in the previous chapter, the vertical density distribution in lakes has gen-
erally two-layered structure. From the physical point of view, these two layers appear to be
outcomes of two main harmonics in external forcing: the seasonal and the diurnal one. Features,
specific for all natural water bodies, – positive dependence of water density on temperature and
the free upper boundary, – determine the reaction of lakes to these oscillations. On seasonal
scales, the downward flux of the solar radiation warms up the upper layers resulting in stable ver-
tical density stratification. The anomalous property of freshwater density should be mentioned
here, namely the non-linear dependence of freshwater density on temperature; at temperatures
below the maximum density point (about4◦C) the density decreases with temperature increas-
ing, and heating from above will result in destabilizing the water column. This effect will be
considered in more detail in Chapter 5. The most intensive heat exchange takes place in summer
at temperatures exceeding the maximum density point and stable seasonal stratification develops
in lakes. At the same time, the secondary effect of the heat exchange at the upper boundary
with the atmosphere disturbs the stratification. Main components of this exchange include tur-
bulent exchange at the interface, emission and absorption of the long-wave infrared radiation
and heat losses due to evaporation. The boundary heat exchange becomes especially important
during nighttime periods, when the short-wave radiative flux disappears. The high heat capacity
of water determines in this case higher heat content of lakes in comparison to lower layers of the
atmosphere and, as a result, intensive heat losses at the surface. It follows in convective boundary
layer formation near the lake surface. Additional contribution in mixing near the surface make
the velocity stresses and waves breaking driven by winds. Wind and convective mixing has time
scales from diurnal to synoptic ones, so the depth of the well-mixed boundary layer varies during
the stratification period. It can be schematically represented by time evolution of the depth of
the interface between the homogeneous boundary layer and the stratified layer, the thermocline,
below it (see Fig. 2.1). The overall vertical structure can be assumed to remain approximately
the same, or in other words, to have aself-similarstructure. This phenomenological,bulk repre-
sentation of physical processes has been widely used in modeling of boundary layers and can be
a very effective tool for prediction of macro-characteristics of a physical system without detailed
description of microscale interactions inside it. The key condition of successful modeling in this
case is the proper choice of physical scales for a process. Bulk modeling of the upper mixed layer
(UML) in the Ocean and in lakes has been gained intensive development starting from works of
Kitaigorodski (1960) and Kraus & Turner (1967). Here were extend the method on the stratified

11
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thermocline layer below the UML in order to achieve a fully parameterized bulk-description of
the whole water column from the lake surface to the water-sediments boundary.

The essence of the thermocline’s self-similarity idea can be illustrated by following citation
from the paper of Munk & Anderson (1948):

. . . the upper layers are stirred until an almost homogeneous layer is formed,
bounded beneath by a region of marked temperature gradient, the thermocline.. . . If
the wind increases in intensity the thermocline moves downward, but the character-
istic shape of the temperature-depth curve remains essentially unchanged(original
authors’ emphasis).

Self-similar solutions are closely related to the dimensional analysis in physics. In fact, they
are different formulations of the same method. Indeed, postulating of self-similarity of a physical
process is adequate to a choice of appropriate scaling or, in other words, to introducing of di-
mensionless co-ordinates. The Monin-Obukhov similarity hypothesis is a famous example of the
power of the approach. Another example, which is often not associated in literature with simi-
larity approach directly, is mixed-layer (or bulk) modeling of the upper ocean. The first oceanic
mixed layer model (Kitaigorodski, 1960) was namely the application of the Monin-Obukhov
theory to the upper ocean. The generalized theory of homogeneous upper ocean layer was de-
veloped later by Kraus & Turner (1967). In terms of similarity analysis, the basic assumption of
homogeneous boundary layer near the surface corresponds to the choice of this layer’s depthh
as a scaling variable. Following Barenblatt (1996):

A time-dependent phenomenon is called self-similar if the spatial distributions of
its properties at different times can be obtained from one another by a similarity
transformation.

In case of the well-mixed UML (see Fig. 2.1), the temperature self-similarity function is:

T (z, t) = Tsf(z/h), (2.1)

where:

Ts = T (0, t); f(z/h) = 1.

The thermoclineis a layer with strong temperature stratification (the part of the temperature
curve between vertical co-ordinatesh andD in Fig. 2.1) and typically develops between the
highly turbulized UML and the rest non-turbulent fluid. This layer exists in lakes either perma-
nently during the summer until the surface temperature falls to the maximum density value and
mixing achieves lake’s bottom (so-calleddimictic lakes) or forms intermittently in shallow lakes
alternating with periods of vertical uniformity (polymicticlakes). The seasonal thermocline de-
velops also in ocean and has an analog in the atmosphere: the interfacial layer developing during
convective entrainment driven by surface heating. In many cases the thermocline tends to have a
universal shape, especially at sufficiently large time scales, when the balance of external forces
becomes close to the steady state. Evidence of this generality in thermocline’s shape argues to
the advantage of modeling the thermocline by using the self-similarity idea, analogous to the
UML concept. Taking into account the thermocline’s structure, it is consistent to adopt the ther-
mocline depth∆h ≡ D − h and the temperature jump across it∆T ≡ Ts − TD as universal
length and temperature scales (Fig. 2.1). The similarity function can be written then as follows:

T (z, t) = ∆Tf(z/∆h). (2.2)
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Figure 2.1: The model representation of the ver-
tical temperature profile in a lake.

In this connection, two originating works dedicated to the analysis of the thermocline should be
mentioned here. In the paper of Munk & Anderson (1948) a model of the open sea thermocline
was developed and tested against oceanic and lake data. Ertel (1954) has proposed an analyt-
ical solution of the heat transfer equation describing vertical temperature jump formation and
deepening during summer heating in a lake. The similarity transformation (2.2) was not used in
both of the papers directly, but some results of their preliminary analysis have found a logical
continuation in self-similar theories of the thermocline. Ertel (1954) investigated time evolution
of a lake thermocline, which he defined following Birge as a layer with temperature gradient
≥ 1◦C. His analysis has shown (Ertel, 1954, Eq. 58), that the ratio of depth from the upper
thermocline’s boundary to the bend point∂2T/∂z2 and that from the bend point to the bottom of
the thermocline is constant or, in other words,the shape of thermocline is independent on time.
The same idea lied in background of the Munk & Anderson (1948) analysis.

The first direct application of the thermocline self-similarity idea to the oceanic active layer
was performed by Kitaigorodski & Miropolski (1970). Using the above mentioned scales, the
authors introduce dimensionless coordinates,

ϑ =
Ts − T (z)

∆h
; ζ =

z − h

∆h
. (2.3)

The variablesϑ ∈ [0; 1] andζ ∈ [0; 1] denote here dimensionless temperature and vertical co-
ordinate, respectively.

The explicit expression for the functionϑ(ζ) was derived by Kitaigorodski & Miropolski
(1970) using Polhausen approach. The approach is widely applied in boundary-layer physics
and consist of approximation of a function in question by an(n− 1)-st order polynomial fromn
boundary conditions the function must fulfill. The following five boundary conditions were used
by the authors:

ϑ (0) = 0, (2.4a)

ϑ (1) = 1, (2.4b)

ϑ′ (1) = 0, (2.4c)

ϑ′′ (1) = 0, (2.4d)

ϑ′′′(0) = 0. (2.4e)
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Prime denotes here differentiation onζ.
The conditions (2.4a, 2.4b) follow directly from the self-similarity co-ordinates definition

(2.3). The condition (2.4c) relies on the assumption of the vertically uniform temperature distri-
bution below the thermocline, that is close to the reality for deep-water conditions of the open
ocean. In this case, the pointζ = 1 is also the bend point (Eq. 2.4d). The last condition (2.4e)
means the curvature maximum existence at the upper thermocline’s boundary and arises from the
thermocline definition given in (Munk & Anderson, 1948). The following 4th-order polynomial
fulfills Eqs. (2.4a-2.4e):

ϑ(ζ) =
8

3
ζ − 2ζ2 +

1

3
ζ4. (2.5)

The representation (2.5) was tested against monthly averaged observational data in (Miropol-
sky et al. , 1970) and the satisfactory agreement was demonstrated for summer heating periods.

The approach had encountered further development in (Arsenyev & Felsenbaum, 1977). Us-
ing the same co-ordinates (2.3) and the Polhausen procedure, the authors discarded a validity of
the condition (2.4e) and confined the approximating polynomial with 3rd degree, that gives:

ϑ(ζ) = 1 − (1 − ζ)3. (2.6)

The shape of the function (2.6) differs only slightly from that given by (2.5). The temperature
profile representation (2.6) was subsequently widely used in thermocline modeling and have
found a theoretical justification as it will be shown below.

The self-similar behavior of the functionϑ(ζ) was confirmed by laboratory experiments on
turbulent mixing in stratified fluids (Linden, 1975; Wyatt, 1978). Linden (1975) has modified the
expression (2.5) for the case of linear stratification in quiescent water under the thermocline in
order to describe the situation existing in his experiments1:

ϑ(ζ) = ζ + [1 − ϑ′(1)]

[
5

3
ζ − 2ζ2 +

1

3
ζ4

]
. (2.7)

Analysis of field data shows much more scatter over an universal self-similarity curve than
that of laboratory experiments (Miropolskyet al. , 1970; Reshetova & Chalikov, 1977). An
attempt of extending the self-similarity description by including additional mechanisms of tem-
perature profile formation was performed in (Mälkki & Tamsalu, 1985). The authors classified
the temperature profiles observed in the Baltic Sea, based on the regime of the UML formation
or destroying. For the mixed layer deepening, the equation (2.6) was adopted. In case of mixed
layer decay, a polynomial was built from the assumption of vertical density gradient disappear-
ance at the UML bottom:ϑ′(0) = 0. In couple with conditions (2.4a–2.4d) that gives

ϑ(ζ) = 1 − 4 (1 − ζ)3 + 3 (1 − ζ)4 . (2.8)

A plausible theoretical explanation of the observed temperature profile self-similarity in the
thermocline was proposed simultaneously and independently by Barenblatt (1978) and Turner
(1978). Taking into account thatζ co-ordinate origin is moving along the vertical with the
velocity ḣ ≡ dh/dt, the heat transfer equation can be rewritten as

∆hϑ̇− (ḣ + ∆̇h)ϑ′ = −∆h

∆T

dQ

dz
, (2.9)

1The final formula in the original paper is inconsistent with the reported underlying gradient, apparently on
account of a typing error.
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whereQ is the vertical heat flux, dots over variables(̇) denote time differentiation and primes
()′ are, as before, derivatives regarding toζ co-ordinate. The first term in (2.9) is of minor
magnitude and can be neglected in most of cases (Barenblatt, 1978), leaving us with ordinary
differential equation with regard toζ. Some additional assumptions about the heat flux profile
Q(t, ζ) allow achieving an analytical solution of (2.9). The additional condition of a solution
existence iṡh + ∆̇h > 0, i.e. the thermocline should propagate in positive direction, otherwise
the equation (2.9) has no stable solution. Solutions of this kind, usually called propagating or
traveling wave type solutions, are widely used in different branches of mathematical physics
(the introduction of a moving co-ordinate system is nothing but another formulation of physical
self-similarity, see e.g. Barenblatt 1996). Both Barenblatt (1978) and Turner (1978) examined
the case of infinitely deep ocean, neglecting the term∆̇h in (2.9) and using the Fickian type
expression for the turbulent heat flux, i.e.

−∆hḣϑ′ = (K ϑ′)′. (2.10)

The simplest model assumption of constant heat conductivityK was examined in (Barenblatt,
1978) and as a first guess in (Turner, 1978). In case ofK = const, the solution of (2.10) in co-
ordinates (2.3) is

ϑ(ζ) =

(
1 − exp

[
− ḣ∆h

K
ζ

])
/

(
1 − exp

[
− ḣ∆h

K

])
. (2.11)

As one can see, the exact form of the solution (2.11) depends on the dimensionless parameter
ḣ∆h/K. An attempt of the parameter estimation based on observational data from ocean weather
stations was performed in (Efimov & Tsarenko, 1980)2. They found, that the valuėh/K is
nearly constant during the summer periods as well as during convective mixed layer deepening
in autumn. Values ofK in the thermocline, estimated on the data, are sufficiently higher than the
molecular value and reach10−4 m2/s.

An interesting analysis of the traveling thermal wave equation (2.10) in application to the
thermocline was performed by Shapiro (1980). In order to take into account oscillations tak-
ing place on the lower thermocline border during the UML deepening, the author has applied

Reynolds-averaging procedure to the entrainment rateḣ = Ḣ +
˙̃
h(t), where ˙̃

h denotes small-
amplitude fluctuations of the mean entrainment rateḢ. After averaging a new source term ap-
pears in the equation for the mean temperature (2.10), describing heat redistribution on account
of the boundary fluctuations:

−ḣϑ′ = Kϑ′′/∆h +
〈

˙̃
hϑ̃ ′
〉
. (2.12)

An additional equation for temperature fluctuationsϑ̃ follows from the Reynolds averaging ap-
plied to the heat transfer equation (2.9), and a solution of this equation was achieved in (Shapiro,
1980) in Fourier quadratures, that allowed estimating the role of the last term on the r.h.s. in
(2.12) if spectral characteristics of the boundary oscillations are given. Particularly, it was shown
that, in an idealized case of single-frequency oscillations of the interface, these oscillations result
in overall cooling through the thermocline and in sharpening of the temperature gradient at the
UML base, as there were an additional energy sink here.

2Barenblatt (1978) made use of co-ordinatesz̃ = z − h andT̃ = (T − Ts)/Ts with conditionsT̃ (0) = 1 and
T̃ (∞) = 0 that gave the solution of (2.10) as̃T = 1 − exp(−ḣz̃/K) and resulted in the infinite thermocline depth.
In (Efimov & Tsarenko, 1980) this solution was incorrectly transformed into co-ordinates (2.3).
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In addition to the case of depth-constantK, Turner (1978) examined one other, more compli-
cated case,K ∝ dT/dz. Using the co-ordinates (2.3), the Turner’s expression forK becomes:

K =
1

4
ḣ∆hϑ′. (2.13)

Then, the equation (2.10) has the solution:

ϑ(ζ) = 2ζ − ζ2. (2.14)

It worth to be mentioned here, that the same expression was achieved in (Golosov & Kreiman,
1992) from phenomenological considerations in application to vertical thermal wave propagation
in lake sediments.

Physical relevance of the vertical heat conductivity representation (2.13) was discussed in
(Zilitinkevich et al. , 1988; Zilitinkevich & Mironov, 1992). If we assume internal gravity waves
breaking to be the main mechanism of turbulence generation in the thermocline, then the mixing
intensity should be in direct ratio on stratification and, consequently, on vertical temperature gra-
dientdT/dz (in contrast to inverse dependence on density gradient for weakly stable conditions).
In any case, an expression forK should include a dependence on the thermal expansion coeffi-
cientαT = (∂+/∂T )s,p as well, in order to reflect an influence of temperature stratification on
mixing. Based on these considerations, Zilitinkevichet al. (1988) have proposed the following
formula, derived from dimensional arguments:

K = l2N. (2.15)

Here,N =
√

g+−1∂+/∂z is the Brunt-Väisälä frequency, andl is a length scale. Assuming the
water density to be a function of the temperature only, one can write:

N2 = β∂T/∂z,

whereβ = gαT is the buoyancy parameter, and the solution of (2.10) with conditions (2.4a),
(2.4b) and (2.4c) is

ϑ(ζ) = 1 − (1 − ζ)3; ∆h = 3
3

√
β∆T l4/ḣ2. (2.16)

The expression forϑ in (2.16) is exactly the same as that achieved before from phenomenologi-
cal considerations (see Eq.2.6) and verified numerously on field data (Arsenyev & Felsenbaum,
1977; Mälkki & Tamsalu, 1985; Rumiantsevet al. , 1986; Tamsalu & Myrberg, 1998). Thus, a
theoretical explanation of the observed self-similarity of thermocline profile was found, at least
for certain mixing conditions.

An analytical model of the thermocline was built in (Zilitinkevich & Mironov, 1992) invoking
the turbulent kinetic energy (TKE) equation in couple with the expression for TKE:

b = (lN)2

which follows directly from (2.15) and from the classical formula of thek-l theory of turbulence:
K = l

√
b. An additional scaling variable arises in this case describing the TKE scale in the

thermocline. The valuebs ≡ b|z=h was chosen as this scale in (Zilitinkevich & Mironov, 1992).
The dependenceϑ(ζ, bs) achieved with the model was compared with those from laboratory
experiments (Deardorffet al. , 1980; Deardorff & Willis, 1982), where direct measurements of
turbulent characteristics were available.
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An attempt of extending of the self-similarity hypothesis on the vertical heat flux distribution
across the thermocline was undertaken in (Tamsaluet al. , 1997). Following the same reasoning
as that in derivation of Eq. (2.8), two different regimes of heat exchange in the thermocline
were distinguished: one existing during the UML deepening (ḣ > 0) and one other associated
with the mixed layer recession (ḣ ≤ 0). As a result, two scales were proposed for the heat flux
description:Q|z=h if ḣ > 0 andQ̄ ≡ 1/∆h

∫ h+∆h

h
Q(z)dz if ḣ ≤ 0 leading to two polynomial

representations of dimensionless vertical flux profiles. These representations were tested against
field measurements data in (Tamsalu & Myrberg, 1998) and have shown a reasonable agreement
with observations.

Most of the self-similarity functions discussed above assume directly or indirectly a homoge-
neous vertical temperature distribution in the water column below the thermocline. Nevertheless,
stratification in the underlying layers plays an important role in entrainment interface formation
during UML deepening. When the assumption of no density gradient in deep layers is tradi-
tionally applied in the ocean modeling with more or less success, the problem of stratification
account becomes of key value in modeling of the convective boundary layer in the atmosphere.
Development of a convective boundary layer (CBL) capped with temperature inversion above
during daytime is an atmospheric analog of the UML deepening in the ocean. This process is
quite similar also to that appearing in lakes, when nocturnal convection is developed on the back-
ground of stable stratification. The self-similarity idea was applied by Fedorovich & Mironov
(1995) to modeling of CBL with account of temperature gradient in inversion layer. The authors
implement the co-ordinates (2.3) but define, the upper boundary of interfacial layer (IL)h fol-
lowing Deardorff (1979) as the point where the temperature (buoyancy) flux changes it’s sign
(dQ/dz = 0). This condition means also density homogeneity in the lower part of the IL (at the
top of the thermocline in the ocean case):ϑ′(0) = 0 , and differs from the common UML def-
inition. The last condition was combined with (2.4a), (2.4b) and with the empirical expression
derived by Deardorff (1979):

Cb =

∫ 1

0

ϑ(ζ)dζ = A exp (αΓ) , (2.17)

whereΓ ≡ ϑ′(1), A= 0.55 andα = −0.27. The Polhausen method was then applied in order to
achieve the functionϑ(ζ,Γ) in form of a 4th order polynomial:

ϑ(ζ,Γ) =

(
3

2
Γ − 12 + 30Cb

)
ζ2

+ (28 − 4Γ − 60Cb)ζ
3 +

(
5

2
Γ − 15 + 30Cb

)
ζ4. (2.18)

The one-dimensional lake modelTeMix is an example of implementation of the self-similarity
approach in applied modeling (Zilitinkevich & Rumyantsev, 1990; Mironovet al. , 1991; Zil-
itinkevichet al., 1992). In the model the two asymptotic polynomials were adopted (see Eqs. 2.6
and 2.8):

ϑ(ζ) =

{
1 − (1 − ζ)3 if ḣ > 0

1 − 4(1 − ζ)3 + 3(1 − ζ)4 if ḣ ≤ 0
, (2.19)

The exact shape of the temperature profile is assumed in the model to slip between the two
asymptotical bounds, that is parameterized by introducing a characteristic time scale

t∗ = ∆h2[(Clh)2N ]−1,
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whereCl is an dimensionless constant (cf. Eq.2.15), and a simple time relaxation formula:

(CT − C0
T )/(C∗

T − C0
T ) = (t− t0)/t∗. (2.20)

Here,CT ≡ ∫ 1

0
ϑ(ζ)dζ is the so-called integral shape factor (cf. Eq.2.17). A superscript0 means

values at the moment of the lastḣ sign change.C∗
T is the asymptotical value, which depends on

the current sign oḟh as it defined by (2.19). Together with the conditions (2.4a)-(2.4d) that leads
to the 4th order polynomial:

ϑ(ζ) = (15 − 20CT )ζ4 − (44 − 60CT )ζ3 + (42 − 60CT )ζ2 − (12 − 20CT )ζ. (2.21)

The model was numerously applied to the simulation of the seasonal cycle of temperature
and mixing in large (Rumiantsevet al. , 1986; Zilitinkevich, 1991) and medium-depth lakes
(Zilitinkevich & Rumyantsev, 1990; Mironovet al. , 1991; Zilitinkevichet al. , 1992).

Thus, a description of the thermocline in terms of self-similarity variables could be a versatile
and inexpensive tool in geophysical modeling. In the background of self-similarity assumption
lies the physically sound representation of the thermocline as a downward propagating thermal
wave. It provides the generality of the description in application to various natural examples of
entrainment in stratified media: seasonal thermocline formation in lakes and the ocean, convec-
tive boundary layer development in the atmosphere.

At the same time, a dependence of the density profile in the thermocline on the background
stratification in adjoining layers has no adequate description yet. This dependence is crucial for
the thermocline formation in many cases, as that of convection in the atmosphere, where stably
stratified inversion layer bounds the interfacial layer from above. In addition, strong gradients in
the bottom layer caused by the heat flux from the sediments can influence the diurnal thermocline
formation in shallow lakes.

2.2 Heat transfer equation for downward propagating heat
wave

As it was mentioned in section 2.1, a theoretical explanation of thermocline’s self-similarity
can be given in terms of so-called traveling (or propagating) wave type solution of the heat
transfer equation . Here some possible solutions of such equation are considered, corresponding
to idealized conditions which can be however applied to many real situations.

The heat transfer equation (HTE) in one-dimensional form can be written as

∂T

∂t
= −∂Q

∂z
(2.22)

whereT is the temperature,Q is the kinematic heat flux,t andz are time and space co-ordinates
correspondingly.

The idea of the propagating wave representation of HTE consist in a co-ordinates transforma-
tion allowing reducing the partial differential equation (2.22) to an ordinary differential equation
with regard to a new co-ordinateζ(t, z).

Rewriting the equation (2.22) in co-ordinates (2.3) one gets:

dTs
dt

(1 − ϑ) +
dTD
dt

ϑ− dϑ

dζ

∆T

∆h

[
dh

dt
(1 − ζ) +

dD

dt
ζ

]
= − 1

∆h

dQ

dζ
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or, using notation introduced in the previous section:

dTs
dt

− d∆T

dt
ϑ− ϑ′∆T

∆h

[
ḣ− d∆h

dt
ζ

]
= − 1

∆h
Q′ (2.23)

The derivatives regarding tot andζ are split in equation (2.23). Thereafter, the equation can
be solved as an ordinary differential equation with regard toζ, if the functionsdTs/dt, dTD/dt,
dh/dt anddD/dt are known. The first two of those derivatives are usually assumed to be neg-
ligible when investigating turbulent entrainment in geophysical boundary layers. Deepening of
the upper mixed layer basedh/dt and that of the interfacial layer bottomdD/dt can be param-
eterized in two different ways depending on real situation to be modeled. For the ocean, the
assumption of infinitely deep basin is often applied. Then, it is consistent to treat the thickness
of the thermocline∆h to be constant in time, ordh/dt = dD/dt.

In this case, equation (2.23) takes the simple form:

∆T ḣϑ′ = Q′ (2.24)

It follows directly from (2.24) that the vertical heat flux profile in the thermocline has the
same shape as the temperature curve. The assumption of similarity of the temperature and heat
flux profiles was used by Zilitinkevichet al. (1988); Zilitinkevich & Mironov (1992) for model-
ing thermocline formation in lakes.

The other possible simplification, agreeing well with many natural situations, is that the
position of the thermocline’s lower boundary is fixed, i.e.dD/dt = 0. It gives when combined
with (2.23):

∆T (1 − ζ)ḣϑ′ = Q′ (2.25)

Indeed, if stratification below the thermocline is strong, the deepening of the lower ther-
mocline border is arrested by density gradient and becomes much slower than the entrainment
velocity dh/dt. In this case,d∆h/dt ≈ dh/dt and the expression (2.25) is valid. In particular,
this approximation was used in the model of the thermocline proposed by Tamsaluet al. (1997).
The situation becomes exactly true in shallow lakes and reservoirs, where the non-turbulent qui-
escent layer does not exist so that seasonal thermocline extends from the lower edge of the mixed
layer down to the basin’s bottom.

If we suppose thermocline’s bottom deepening to be arrested by underlying stratification, it is
necessary to take this stratification into account when parameterizing the temperature distribution
inside the thermocline. As it was already mentioned in the previous chapter, it can be made by
including the dimensionless temperature gradientΓ below the IL into governing parameters of
the problem (see Eq. 2.17). The gradientΓ is defined as:

Γ =
∆h

∆T

(
∂T

∂z

)
z=D

(2.26)

The temperature curve inside the thermocline changes its shape depending onΓ. We do not
stipulatea priori an exact form of this dependence. A proposition can be made that in caseΓ = 0
the shape of the curveϑ(ζ) should be close to that, given by previous parameterizations (2.5, 2.6,
2.16). Increasing ofΓ should result in collapsing of the IL (see Fig. 2.2), i.e. in decreasing of
the integral shape factor

∫ 1

0
ϑ(ζ)dζ (see e.g., Deardorff, 1979). For the asymptotic caseΓ → ∞
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Figure 2.2: Sketch illustrating dependence
of the temperature distribution in the ther-
mocline on stratification in non-turbulent
fluid.

we can postulate then,
∫ 1

0
ϑ(ζ)dζ → 0 that means collapsing of the IL to a temperature jump at

Γ → ∞ (see Fig. 2.2). This is the only additional condition we introduce for description ofϑ(Γ)
dependence.

Considering the physical mechanism of turbulent entrainment into a stratified fluid, the aver-

age gradient through the non-turbulent quiescent layer
(
∂T
∂z

)
z>D

should be used rather than the

temperature gradient just below the thermocline. The influence of the stratification displays itself
in this case through generation of internal waves, which intensity is proportional, in its turn, to
the average squared Brunt-Väisälä frequencyN2 and consequently, to the average temperature
gradient (see e.g., Thorpe 1973). Avoiding redundant complication, we can assume the temper-
ature below the thermocline to develop linearly regarding to depth, in which case both gradients
are coincident.

None of the parameterizationsϑ(ζ) cited in section 2.1 describes adequately the thermocline
behavior in the whole range ofΓ variability. Moreover, when using polynomial approximation
of temperature profile as it is done in Polhausen approach, it is impossible to reproduce collapse
of the thermocline at infinitely growingΓ. Below, a parameterization based on self-similar expo-
nential temperature profile is proposed and possible theoretical explanation of the self-similarity
is discussed.

The following conditions have to be satisfied in order to represent the real situation with
account of underlying stratification:

ϑ = 0 at ζ= 0; ϑ = 1 at ζ= 1;
dϑ

dζ
= Γ at ζ= 1;

∫ 1

0

ϑ → 0 at Γ → ∞. (2.27)

The first two conditions follow directly from the dimensionless co-ordinates definition (2.3). The
second pair expresses the dependence on underlying stability, where the last condition reproduces
the behavior of the integral shape function in the asymptotic case of two-layered fluid. We search
the functionϑ(ζ,Γ) in form ϑ = ζ · f(ζ,Γ), satisfying the first two conditions automatically.
Analyzing the second two conditions, the function in question can be written as:

ϑ = ζe(ζ−1)(Γ−1) . (2.28)
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According to (2.28), the infinitely increasing underlying stabilityΓ will lead to degeneracy
of the interfacial layer down to the density jump at its lower border. In the second asymptotical
caseΓ = 0, the expression (2.28) reduces to

ϑ = ζe1−ζ . (2.29)

The shape of dimensionless temperature profile is very close in this case to those found
previously using Polhausen method (Eqs. 2.5, 2.6) as it can be seen in Fig. 2.3. The case ofΓ =
1/5 is also shown in the figure in comparison with the function (2.7) achieved by Linden (1975)
from laboratory modeling.

Thus, we can state that the solution adequately describes the entrainment interface between
two non-stratified layers, the situation, most often modeled and approximating many real physi-
cal situations.

In caseΓ = 1 the solution diminishes to the linear temperature profile within ILϑ = ζ
with the gradient equal to that in non-turbulent underlayer. It is the simplest temperature profile
corresponding the condition

∫ 1

0
ϑ(ζ)dζ = 1/2 and coincides to the temperature profile in the

idealized case of non-penetrative convection, so-called “encroachment” regime (Zubov, 1943).
It should be mentioned, however, that the co-ordinatesζ andϑ are not relevant in case of en-
croachment (which regime is also physically impossible), since there is no IL in this case at all,
and scales∆h and∆T are undefined. The impossibility of a thermocline existence withΓ = 1
is expressed in the solution by indefiniteness of the heat flux within the IL, which expression is
derived below (2.32) and leads to division by zero in caseΓ = 1. Further increasing ofΓ results
in concave shape of the temperature profile within the IL, which also observed in real situation
of entrainment in strongly stratified fluids as it will be shown in the Section 2.3. At very highΓ
the profile will degenerate to a temperature jump at the IL bottom. From physical point of view,
the depth of IL∆h should also decrease withΓ increasing, so we arrive at asymptotic case of a
temperature jump∆T in a layer of zero depth, – an approximation widely used in modeling the
turbulent entrainment in stratified fluids (so-called “zero-jump” approximation).
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Figure 2.3: Dimensionless temperature
profile; thick solid line – as it given by
(2.29), thin lines – previously used approx-
imations: dashed line – Γ = 0, ϑ = 8/3ζ −
2ζ2 + ζ4/3 (Kitaigorodski and Miropolski
1970); dotted line – Γ = 0, ϑ = 1−(1−ζ)3

(Arsenyev and Felsenbaum 1977); dash-
dotted line – Γ = 1/5, ϑ = 2ζ − 6/5ζ2 +
1/5ζ4 (Linden, 1975)

The formula can be achieved from the heat transfer equation in the following way. Assuming
linear dependence of the water density on temperature, equation (2.9) can be rewritten in terms
of buoyancy

b = −g(+− +0)/+0, (2.30)

where g = 9.81 m/s2 is the gravity acceleration and +0 is the reference density.
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Taking into account aforementioned simplifications, equation in the co-ordinates (2.3) takes
the form:

(ζ − 1)
dϑ

dζ
=

dΦ

dζ
. (2.31)

Here Φ = 〈b′w′〉 / (∆bdh/dt) is the dimensionless buoyancy flux. The buoyancy flux profile
corresponding to the solution of the ordinary differential equation can be found as:

Φ =
2 − Γ

(Γ − 1)2 +
dϑ/dζ

(Γ − 1)2

[
1 + ζΓ − ζ − ζ (Γ2 + Γ − 2)

1 + ζΓ − ζ

]
, (2.32)

which expression reduces in case of Γ = 0 to:

Φ = 2 − dϑ

dζ

(
ζ2 + 1

)
/ (ζ − 1) . (2.33)

Reverting to dimensional variables, one gets (the co-ordinates origin is moved to the upper
thermocline boundary h, excluding D from the equation):

〈b′w′〉 = (∆h− z)−1 dh

dt

[
2∆b(∆h− z) + N2(∆h2 + z2)

]
, (2.34)

where N2 is the squared Brunt-Väisälä frequency:

N2 =
1

b0

db(z)

dz
.

The expression in square brackets of (2.34) is the potential energy on the level z. The same
expression for the potential energy in IL was derived by Kantha (1977) from dimensional con-
siderations when investigating internal wave generation during thermocline deepening.

The expression (2.34) clarifies the physical meaning of the self-similar buoyancy flux profile.
According to it, the turbulent buoyancy flux at the depth z is equal to time changing of potential
energy at z due to “compression” of the thermocline with the buoyancy jump across it being
constant. In Fig. 2.4 dimensionless profiles of buoyancy (or temperature), buoyancy flux and
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Figure 2.4: Vertical profiles of dimensi-
onless temperature ϑ, heat (or buoyancy)
flux Φ and vertical diffusivity χ corre-
sponding the self-similar representation
(2.29, 2.33).

diffusion coefficient χ = Φ (dϑ/dζ)−1, are drawn. The profiles reveal the typical features of
turbulent entrainment in stratified fluid.
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The fact that the present entrainment model accounts for stratification in the entrained fluid,
extends its applicability on a wider spectrum of geophysical processes. In couple with the as-
sumption of fully-mixed upper layer, the parameterization describes vertical distribution of main
physical characteristics across the whole turbulized fluid column, that can serve as a basis for a
one-dimensional model of temperature evolution in a lake or in surface layers of the ocean and
the atmosphere.

The reliability of the proposed parameterization for various geophysical situations is demon-
strated in the following section. Spatial scales vary there from few meters in shallow lakes to
tens of kilometers in the atmosphere of Mars allowing us to verify the validity of the proposed
scaling.

2.3 Thermocline Development in Natural Conditions. Com-
parison with the Proposed Model

While the information about temperature distribution is easy available, direct measurements of
vertical heat flux in the thermocline are difficult to perform. In natural conditions such mea-
surements are often influenced by essentially three-dimensional small-scale processes, which
disagree with one-dimensional assumption used here. The disagreement does not mean an incon-
sistency of the one-dimensional approach; the approach is regarded as the asymptotical solution,
the real distributions tends to at larger time scales. In following, heat flux profiles are estimated,
where possible, from available information using some simplifications.

2.3.1 Oceanic upper layer

Development of the seasonal thermocline in the ocean was numerously investigated, in particular
with application of the thermocline self-similarity hypothesis. Field data on vertical temperature
distribution in upper ocean layers were analyzed in terms of co-ordinates (2.3) e.g. in (Miropol-
sky et al. , 1970; Reshetova & Chalikov, 1977; Efimov & Tsarenko, 1980). Observations data
were compared with parameterizations (2.5), (2.6) which in their turn are very close to the func-
tion given by (2.29) with Γ = 0. The comparison had shown good agreement between observed
and modeled profiles. Since the conclusion can be extended on the present model, the analysis
is not replicated here and can be found in the cited papers. It should be only mentioned, that all
authors cited here used data collected in the central Pacific, where the main thermocline does not
exist, i.e. there is no temperature gradient below the seasonal thermocline. In these conditions no
examination can be made about Γ influence on the shape of temperature profile in the interfacial
layer.

Measurements in the central part of the Baltic Sea were used by Tamsalu & Myrberg (1998)
for testing the self-similarity approach in application to the thermocline problem. The tempera-
ture structure is very similar here to that observed in the open ocean (Fig. 2.5, left panel). The
temperature gradient at the thermocline’s bottom is also absent here, and, not surprisingly, the
temperature structure agrees well with the parameterization (2.29). In addition to the temper-
ature data, the authors report the vertical heat flux estimations based on CTD (conductivity-
temperature-depth) measurements. The values are reported in dimensionless form based on the
same co-ordinates (2.3), but no estimations of the entrainment velocityḣ is given as well as no
dimensional values of the heat flux are reported, that does not allow us to evaluate the relation
ḣ∆T/Q(h). Therefore, the expression (2.33) is re-scaled with regard to the surface heat flux
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Figure 2.5: Dimensionless profiles of water temperature (left) and vertical heat flux (right) in
Baltic Sea. The figure is adapted from (Tamsalu and Myrberg 1998). Model representations
(2.29), (2.33) are drawn over the measured profiles (red lines)

Q(h) in order to be adequate to the scaling used in the cited paper. The estimations agrees
fairly good with the heat flux parameterization (2.33), as it is demonstrated in the right panel of
Fig. 2.5.

2.3.2 Data from laboratory experiments

The only example, where direct heat flux measurements were made in conditions close to one-
dimensional, is laboratory modeling of turbulent entrainment. The heat flux representation was
tested against results of laboratory modeling on entrainment in stratified fluid (Deardorff, 1979).
The profiles for different underlying stratification are drawn in Fig. 2.6 in terms of dimensionless
variables ζ and Φ. The accordance with experimental data is rather quantitative. Nonetheless,
in case of neutral stratification under the interfacial layer (case E1 in Fig. 2.6), the solution
predicts well the value of buoyancy flux at the top of thermocline as −[exp(1) − 2] ∆b dh/dt.
Uncertainties in heat flux estimation appearing in other cases could result from the fact that the
measured values are taken at the initial stage of the experiment, when entrainment process has
not stationary nature. In this case, the 1st term in the equation cannot be neglected and the
assumption about fixedness of the lower pycnocline border is not valid.

2.3.3 Atmospheric convective boundary layer

The density structure of the surface boundary layer in the atmosphere is very similar to that of
the oceanic upper layer. Solar heating of the surface results in convection, which develops on
background of stable temperature stratification formed during night cooling. Hence the process
has diurnal time scale in contrast to seasonal scales in the ocean and to the synoptic ones in
shallow lakes. The spatial dimensions of the convective layer are about several kilometers, that
is much larger in its turn than in water. Another distinctive feature of the convection in the at-
mosphere is existence of the stably stratified inversion layer capping the CBL from above. As
long as the convection entrains the air from above, the interfacial layer between the CBL and the
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Figure 2.6: Dimensionless heat flux distribution within the pycnocline based on data from labo-
ratory experiments of Deardorff (1979). Dashed lines with dots are measured values, solid lines
are buoyancy flux profiles as they found from (2.32). Four plots present cases with different
stratification under the entrainment layer Γ. Plot A: Γ = 3.5 (case A3 in the Deardorrf paper);
plot B: Γ = 0.6 (case B3); plot C: Γ = 1.3 (case C3); plot D: Γ = 0 (case E1).

inversion layer is formed, similar to the thermocline in the ocean. Unlike the seasonal thermo-
cline, a density gradient always exists at the boundary between the IL and the inversion layer, i.e.
Γ differs substantially from zero. A number of parameterized models for the atmospheric CBL
were proposed. The IL is parameterized in these models usually as a zero-order temperature
jump (Lilly, 1968) or by using of linear approximation of the real temperature profile (e.g. Betts
1974; Gryning & Batchvarova 1994). A polynomial approximation of the temperature structure
in the IL was proposed by (Fedorovich & Mironov, 1995) and is described above in section 2.1
(Eq. 2.18). However, the approximation is unable to describe the temperature distribution at
high values of the Γ (it produces negative values of the dimensionless temperature ϑ, which are
unrealistic from physical point of view: the density inside the IL cannot be higher than in the
fluid below).

The solution (2.28), (2.32) describes adequately the IL behavior in the whole range of Γ
variability and can be directly applied to modeling of the atmospheric entrainment layer. In
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order to demonstrate it, the solution is compared with data from radiosonde air temperature
measurements. The data were collected during the First International ISLSCP Field Experiment
(FIFE) (Strebel et al. , 1994).
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Figure 2.7: Radiosonde data collected during FIFE Experiment, 11 Aug. 1989. Left panel:
Three potential temperature profiles in late afternoon; right panel: averaged upward temperature
flux estimated from the air temperature time evolution.

Profiles of potential temperature in the atmosphere were measured by means of intensive
radiosoundings conducted in northeastern Kansas in the late summer 1989. The profiles are
shown in the left panel of Fig. 2.7, representing the convective boundary layer structure at the
end of daytime heating. They reveal the typical structure of the CBL with well-developed mixed
layer at the surface and the stable inversion layer above. The interfacial layer developing at the
top of mixed layer is about 500 m. deep and has the structure similar to the oceanic thermocline.
The vertical heat flux estimation (right panel in Fig. 2.7) is made on the basis of 1-dimensional
equation (2.22) using successive temperature profiles for calculating the flux divergence and
assuming the turbulent flux to be zero above the IL (Chorley et al. , 1975).

When scaled using co-ordinates (2.3) with account of the average temperature gradient in
the inversion layer (Fig. 2.8), the temperature and heat flux profiles agree fairly well with the
parameterized solution (2.28) and (2.32). The slight disagreement between the observed and
modeled shapes of the heat flux profile can be referred to uncertainties in the flux estimation
method from temperature profiles.

Nevertheless, the theory gives the correct value of Φ at the top of the IL (at ζ = 0) and
describes the overall structure of the heat flux inside the IL. It allows us to draw the conclusion
about adequacy of the present model in application to the atmospheric CBL description and,
more commonly, about generality of the scales ζ, ϑ and Γ for 1-dim description of turbulent
entrainment in stratified media.
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Figure 2.8: Left panel: dimensionless representation of air temperature; right panel: heat flux in
IL. Dashed lines are observational data from Fig. 2.7, solid lines represent corresponding model
profiles calculated with Eqs. (2.28), (2.32).

2.3.4 CBL in the Mars atmosphere

An interesting example of the interfacial layer formation, illustrating versatility of the achieved
solution, show data of the Mars atmosphere sounding acquired during the Mars Global Surveyor
experiment (MGS) (Hinson et al. , 1999). The daytime boundary layer developing above the
Mars surface is very similar to that existing in the Earth atmosphere but has different temperature
and spatial scales. Potential temperature profiles typical for the Mars atmosphere are shown
in Fig. 2.9. A strong stable stratification develops here during the night, which stratification
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Figure 2.9: Potential tempera-
ture profiles over the Mars sur-
face in early summer 1998 at
mid-latitudes (southern hemi-
sphere). MGS data from the
NASA‘s planetary data system.

achieves the surface (03:00 curve in Fig. 2.9), while daytime surface heating forms convectively
mixed layer analogous to the CBL in the Earth atmosphere, but more than 10 km. deep (19:00
curve in Fig. 2.9). Time scale of this process is the local day, which is close in duration to the
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Earth day (24 hours 38 min). A distinctive feature of this layer is the strongly stratified inversion
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Figure 2.10: Dimensionless potential temperature profiles in the lower part of the Mars atmo-
sphere. Data collected during summer months by MGS. Local time 18:00–19:00. Four plots
present cases with different mean temperature gradients over the entrainment layer Γ. Red lines
are profiles calculated with (2.28)

layer adjoining the well-mixed boundary layer from above. The vertical temperature gradient in
this layer varies with latitude and is usually much higher than the gradient in the inversion layer
of the Earth atmosphere. The shape of the temperature profile in the interfacial layer ϑ depends
strongly on this gradient and cannot be described by any function of the co-ordinate ζ only. This
variety of the IL structure is demonstrated in Fig. 2.10, where the sounding data are presented in
the dimensionless co-ordinates (2.3). The four temperature profiles were achieved in the same
evening hours, when the CBL is fully developed, but they differ noticeably in their structure.
However, if one takes into account the stratification above the IL and includes it in form of the
dimensionless gradient Γ into equation (2.28), the agreement between the observed profiles and
the proposed parameterization (red solid curves in Fig. 2.10) becomes decisive.

Among all examples of the mixed layer development in natural conditions, the CBL of the
Mars atmosphere has the largest spatial scales and the strongest background temperature gradi-
ents. The fact, that the equation (2.28) reproduces it structure adequately, argues the solution to
be quasi-universal for one-dimensional thermocline modeling.
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2.3.5 The thermocline in fresh-water lakes

The seasonal thermocline in lakes has similar structure and formation mechanisms as that in
the ocean. In many cases, there is no observable stratification in the non-turbulent layer below
the thermocline, that allowed many investigators to apply directly polynomial approximations
similar to (2.6) to its modeling (see e.g. Mironov et al. 1991; Golosov & Kirillin 2000). It
suggests the present model in zero-gradient form (Eq. 2.29) also to simulate the thermocline
structure in the right way. Temperature measurements in dimictic lakes support this suggestion.
Figure 2.11 demonstrates data of such measurements in four North-American lakes presented in
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Figure 2.11: Dimensionless temperature profiles in the thermocline in four North-American
lakes. Panel A: Crystal Lake (89◦37′W 46◦00′N); panel B: Big Muskellunge Lake (89◦37′W
46◦01′N); panel C: Fish Lake (89◦39′W 43◦17′N); panel D: Lake Mendota (89◦24′W 43◦06′N).
Mean depths are given in the figures. The thermocline base was determined as the depth, where
∂T/∂z = 0.

non-dimensional form according to (2.3).
The essenceof self-similarity idea consist in universality of the temperature profile in dimen-

sionless co-ordinates. Hence, all measurement points should group around the self-similarity
curve, independent on the real temperature profiles. The figure demonstrates this fact, where
data points, collected during more than 20 years, delineate the curve very close in shape to that
given by Eq. (2.29). The data were collected by the North Temperate Lakes site of the Long
Term Ecological Research Network (LTER, http://lternet.edu/). All lakes are dimic-
tic, i.e. seasonal thermocline exists here during the whole summer heating period between spring
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and autumn overturns. As the temperature gradient below the thermocline vanishes, all profiles
tend to collapse at one universal curve, which curve is very close to that given by Eq. (2.29).
The agreement of observed temperature profiles with the parameterization is better for deeper
lakes, (Crystal Lake panel A in 2.11 and Big Miskellunge Lake, panel B), though profiles in the
Lake Mendota have less universal shape. The apparent explanation for that, is the horizontal
inhomogeneity. The Lake Mendota has the largest surface area (3938 Ha) and highly developed
shoreline. For comparison, the Crystal lake with similar mean depth has the surface area of
36.7 Ha and low shoreline development, providing horizontal homogeneity and consequently,
the good agreement with the theory.

2.3.6 A polymictic lake – the Lake Müggelsee

Series of vertical temperature distribution measurements were performed during the summer
2000 in the Lake Müggelsee located near Berlin, Germany. The observations data were pro-
cessed in terms of co-ordinates (2.3) (Kirillin, 2001b). In many typical situations, bottom bound-
ary mixing destroys the vertical temperature gradient below the thermocline and the temperature
profile agrees well with that, given by (2.28). In case of significant stratification at the bot-
tom, the formula reproduces the temperature profile deformation fairly good (Fig. 2.12, left).
The representativity of the expression is demonstrated by the dependence of the integral shape
factor Cb =

∫ 1

0
ϑdζ on the background stratification Γ (Fig. 2.12, right), which dependence is

adequately described by the solution in the whole range of the Γ variability.
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Figure 2.12: Comparison of the self-similar solution with observations data from the Lake
Müggelsee. Panel A: Dimensionless temperature profiles for the case of strong bottom tem-
perature gradient; points with dashed lines are measurements, solid lines – computed with (2.28)
dotted line – asymptotic profile from (2.29). Panel B: Variability of the integral shape factor Cb
(see text for definition) depending on the bottom temperature gradient in the Lake Müggelsee.
Points are data from weekly temperature profiles collected during 1979-1996. Line represents
Cb give by the present solution.



Chapter 3

The 1-dim model of lake temperature
evolution TeMix

The model of the thermocline, introduced in the chapter 2 can serve as a basis for 1-dimensional
model of temperature evolution in a lake. In couple with mixed layer approach the thermo-
cline’s model gives a integral (bulk) description of the entire water column subjected to turbulent
mixing. It allows us to avoid introducing small-scale turbulence parameters such as the eddy
diffusion coefficient, which are difficult to estimate and have often ambiguous physical meaning.
Of course, parameterizing the multi-scale turbulent motions by means of lake-scale variables
excludes many processes from consideration and makes the model rather rough. However, the
integrated approach has some apparent advantages: transparent physics underlying the model
parameterizations ensure their versatility and make the model not a predictive tool only but also
a reference for information about physical mechanisms governing real processes; besides, the
method assure minimum of computations making bulk models an attractive alternative for impli-
cation in applied tasks critical for computer capacities.

The following model derivation adopts general ideas underlying the version 2 of the TeMix
model (Mironov et al. , 1991). Conserving the calculation algorithm for the air-lake fluxes, the
model of the water column is re-derived here using results described above. The polynomial rep-
resentation of the thermocline profile from TeMix2 (2.21) have been rejected to take advantage
of the current thermocline model (chapter 2). In addition, the entrainment equation is derived
more carefully with taking care of the vertically distributed absorption of the solar radiation.
Implementation of this new entrainment equation in TeMix2 results in sufficient improvement
of the model predictions as it demonstrated in chapter 4. No sequential number to this research
version of the model and it is referred to below as TeMix.

3.1 Problem’s statement. Basic concepts

After Kraus & Turner (1967), one-dimensional mixed-layer models were numerously utilized as
a method for analysis and prediction of vertical density structure of the natural fluids. A number
of bulk-models have been proposed based on upper mixed layer concept in application to the
open ocean (Kraus & Turner, 1967; Denman, 1973), to the atmosphere (Ball, 1960; Batchvarova
& Gryning, 1991) and to lakes (Tucker & Green, 1977; Spigel et al. , 1986).

A number of 1-dimensional models were developed for lake and reservoir dynamics simu-
lation (Imberger & Patterson, 1981, DYRESM model), (Jirka et al. , 1978; Jirka & Watanabe,
1980, MITEMP model). Being an attractive alternative to eddy coefficient models, they need,

31
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however, additional hypotheses describing the temperature evolution below the mixed layer. The
Fickian description of vertical turbulent exchange is invoked here by most of authors again (see
e.g. review in Octavio et al. 1977). The value of the eddy coefficient is assumed usually in
this case to be greater than the molecular diffusivity but constant with depth or semi-empirical
dependence of K on stratification is introduced.

3.1.1 Governing equations and general assumptions

The thermocline model developed in chapter 2 complements the mixed layer approximation
(2.1) to the representation fully parameterized in vertical direction (Fig. 3.1), excluding the eddy
coefficient from consideration.

0Qs

Qh
h

D

0 TsTD

temperature heat flux

Figure 3.1: The parameterized representation of the temperature (left) and of the vertical heat
flux (right) profiles in a lake.

The evolution of the temperature profile in a lake is described by the heat transfer equation:

∂T

∂t
= −∂Q

∂z
− ∂I

∂z
+ κ

∂2T

∂z2
, (3.1)

where: Q ≡
〈
w̃T̃
〉

is the vertical turbulent temperature flux;

I is the kinematic flux of solar radiation (i.e. the radiation heat flux divided by the
reference density, +0 = 103 kg·m−3, and specific heat of water at constant pressure,
cp = 4.218 · 103 J · kg−1·K−1);
κ = 1.4 · 10−7m2·s−1 is the molecular temperature conductivity.

Last term in (3.1) describes the molecular heat transfer and is negligibly small in most of the
natural conditions1, so we exclude it from further consideration. Bulk modeling approach con-
sists of integrating (3.1) along the vertical axis on the basis of some physically sound assumptions
about vertical profiles of the variables T , Q and I .

To summarize general assumptions underlying subsequent model derivations:
1A special case, where κ is important, takes place in ice-covered lakes when strongly stratified layer with no

turbulence is formed under the ice cover, see chapter 5.
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i. Horizontal variations in all characteristics are neglected.

ii . Water density is assumed to be a function of water temperature only, that is close to reality
for most of fresh-water lakes.

iii . Temperature changes associated with dissipation and with changes in salinity are ne-
glected.

iv. Within the thermocline the temperature distribution obeys the equation (2.28), whereas the
temperature of the UML is a function of time only.

With the assumption (iv), the temperature profile is written as

T =

{
Ts at 0 ≤ z ≤ h
Ts − (Ts − TD)ϑ (ζ,Γ) at h ≤ z ≤ D

. (3.2)

The temperature distribution (3.2) is fully parameterized in vertical direction allowing us to inte-
grate equation (3.1).

A simple state equation of fresh water corresponding to the assumption (ii ) is:

+ = +0[1 − αT/2(T (t, z) − T0)], (3.3)

where: +0 – maximum water density, which corresponds to the temperature T0;
αT = α0(T (t, z) − T0) – the thermal expansion coefficient for fresh water.

The following values of constants in (3.3) are adopted: +0 = 999.9757 ≈ 103 kg·m−3,
T0 = 276.9817 ≈ 277 K, and α0 = 1.6509 · 10−5 K−2. The above estimates provide the best fit
to the UNESCO equation of state in the temperature range from 273 K to 293 K at atmospheric
pressure. (Fofonoff & Millard, 1983). According to Eq. (3.3), the thermal expansion coefficient
αT and the buoyancy parameter β depend on the water temperature, β(T ) = gαT (T ) = gα0(T −
T0), where g = 9.81 m·s−2 is the acceleration due to gravity.

Using the buoyancy definition (2.30), the vertical buoyancy flux is:

B = βQ

and the buoyancy transport is given by:

∂b

∂t
= −∂B

∂z
− gαT

∂I

∂z
. (3.4)

The mixed layer approach closely related to the turbulent entrainment concept (Turner, 1986).
The entrainment equation links the movement of UML bottom h with turbulent mixing in a water
body, and is derived on the basis of assumptions specific for certain physical conditions from the
equation of the turbulent kinetic energy e = 〈w̃〉 /2 evolution. The last one can be written in
one-dimensional form as follows (Kraus, 1972):

∂e

∂t
= 〈w̃ũ〉 ∂U

∂z
+

∂

∂z
[〈w̃ẽ〉 ++−1

0 〈w̃p̃〉] −B −ε (3.5)

I + ( II + III ) − IV−V

Individual terms on the right hand side of the equation (3.5) have the following meaning: the
work of the stress 〈w̃ũ〉 on the mean shearing flow, the convergence of the turbulent vertical flux
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(II), turbulent pressure fluctuations (III), rate of working of the buoyancy force (IV) and the rate
of viscous dissipation of turbulence energy (V).

The partial differential equations set (3.1), (3.4), (3.5), when complemented by appropriate
boundary conditions, determines the problem of heat transport in the co-ordinates t an z. In spirit
of the bulk modeling approach, we reduce the system of the three partial differential equations
to a system of ordinary differential equations for parametersTs(t), TD(t), and h(t), where the
explicit dependence of the problem on the vertical co-ordinate z is excluded through the param-
eterization (3.2).

3.1.2 Boundary conditions

Heat flux at the lake surface Qs, downward flux from the thermocline QD and the surface mo-
mentum flux 〈ũw̃〉S form the boundary conditions for the problem. The heat flux through the
lake surface is contributed by different mechanisms; the principal ones are absorption of solar
radiation, sensible air-water heat exchange and latent heat flux driven by evaporation. The flux
boundary condition at the surface can be written in general form as:

Qs = (1 − A)IR + H + LE + R, (3.6)

where: IR – incoming short-wave solar radiation;
A – surface albedo;
H – sensible heat exchange at the air-lake boundary;
LE – latent heat loss during evaporation;
R – total long-wave radiation of the atmosphere and of the lake.

The terms of (3.6) are complicated functions of atmospheric conditions. In the present model
we adopt the algorithm of sensible and latent fluxes calculation from (Mironov, 1991) based on
bulk parameterizations accounting stratification in the lower atmosphere. The methods of long-
wave radiative fluxes calculation are used described in (GGO manual, 1982), whereas short-wave
insolation is supposed to be measured directly at the lake surface or at the next meteorological
station.

The momentum flux,

〈ũw̃〉S = τ/+0 = u2
∗, (3.7)

is the source of the mechanical energy contributing mixed layer deepening and is defined by the
surface wind stress τ . The characteristic u∗ is known as the friction velocity.

At the bottom of the thermocline the turbulent heat flux is zero by definition, that means:

∂TD
∂t

= −∂I(D)

∂z
, (3.8)

The equation (3.8) is not valid when the thermocline extends to the lake bottom. Turbulence
in bottom boundary layer causes heat exchange with sediments, which can be much more signif-
icant than the amount of solar radiation reaching the bottom. The bottom heat flux QD should be
included in this case into boundary conditions of the model.

The general structure of the model with corresponding boundary conditions is shown in the
Fig. 3.2.
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Figure 3.2: External energy fluxes influencing lake temperature and main blocks of the temper-
ature model.

3.2 Model equations

3.2.1 The radiative heat flux

In order to integrate (3.1) in vertical direction, the function I(z) should be specified. It is known,
that monochromatic light is absorbed in water by the exponential Beerlaw (Jerlov, 1976):

Iλ(z) = Iλ(0) e−γ(λ)z, (3.9)

where γ is the extinction coefficient for a given wavelength λ. With sufficient accuracy the
extinction law for solar light can be written as:

I(z) =

∫
Iλ(0)e−γ(λ)zdλ ≈ I(0)

∑
n

ane
−γ(λn)z, (3.10)

where the number of wavelength bands in the sum on the r.h.s is chosen according to desir-
able accuracy of the integral approximation. Assumption of constant γ for the whole daylight
spectrum is often used in physical applications despite the extinction variability can influence
noticeably modeling results (Orlov, 1996; Hocking & Straškraba, 1999). The derivation of the
model equations below is made in assumption of I to be a predetermined function of depth.

In calculations the simplest one-band approximation is used,

I(z) = I0 e−γz, (3.11)

with I0 defined as (1 − A)IR (see Eq. 3.6).
More sophisticated parameterizations for the light distribution can be easily integrated into

the model if they are justified by available observational data.

3.2.2 The integral heat budget

Entire water column Integrating (3.1) from the lake surface to the bottom one gets the equa-
tion for the vertically averaged temperature evolution:

∂T

∂t
=

1

D

∂

∂t

∫ D

0

T (z, t)dz =

(
Qs + I0

)− (QD + I(D)
)

D
, (3.12)
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The mean temperature T is defined according to (3.2) as:

T = Ts − (1 − h/H) (Ts − TD)

∫ 1

0

ϑdζ, (3.13)

where the dimensionless integral is found from (2.28):∫ 1

0

ϑdζ =
Γ − 2

(Γ − 1)2
+

e1−Γ

(Γ − 1)2
. (3.14)

From (3.12) and (3.13) we can express dTs/dt:

dTs
dt

=

[
dCT
dt

∆T∆h + ḣCT∆T +
dTD
dt

CT∆h− ∆Q

]
/(CT∆h−D), (3.15)

where:

∆T = Ts − TD, ∆Q =
(
Qs + I0

)− (QD + I(D)
)
,

∆h = D − h, CT =

∫ 1

0

ϑdζ =
e1−Γ + Γ − 2

(Γ − 1)2 .

Upper mixed layer The assumption that the temperature of the mixed layer Ts is independent
of z co-ordinate allows easily integrating (3.1) over the mixed layer depth and achieving the
equation of the mixed layer temperature evolution:

dTs
dt

=

(
Qs + I0

)− (Qh + I(h)
)

h
. (3.16)

Integrating (3.1) from the surface to a depth z′, and again from the surface to the depth h we
achieve with account of (3.16) the expression for the turbulent heat flux profile in the UML:

Q(z) =
(
1 − z

h

)
(Qs + I0) +

z

h

(
Qh + I(h)

)
− I(z). (3.17)

Stratified layer The turbulent heat exchange inside the stratified layer below the UML is as-
sumed to comply with the thermocline model described in chapter 2. This implies the lower
thermocline’s boundary coincide approximately with the lake’s bottom. Generally, the condition
is satisfied in most of stratified lakes except very deep ones. Then, the equation (3.1) can be
written as (see Eq. 2.28)

Q = (Ts − TD)Φ (ζ,Γ)H
(
ḣ
)

at h ≤ z ≤ D, (3.18)

where dimensionless function Φ is

Φ(ζ,Γ) =
2 − Γ

(Γ − 1)2
+

dϑ/dζ

(Γ − 1)2

[
1 + ζΓ − ζ − ζ(Γ2 + Γ − 2)

1 + ζΓ − ζ

]
, (3.19)

and H() is the Heaviside-like step function defined as follows:

H(x) =

{
0 if x ≤ 0,

x if x > 0.
(3.20)
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The function H
(
ḣ
)

reveals the fact that the turbulent heat flux exists in the stratified layer only

during UML deepening, when there is a turbulence energy source at the UML base.
Integrating (3.1) with regard to the vertical co-ordinate z from h to some depth z′ and again

from h to D, we arrive:

∆h2

2

dTs
dt

− dCTT
dt

∆h2∆T + 2CTT∆h∆T ḣ− CTT∆h2(
dTs
dt

− dTD
dt

) =

CQ∆h∆TH(ḣ) − ∆hI(h) +

∫ D

h

I(z)dz, (3.21)

where,

CTT =

∫ 1

0

dξ

∫ ξ

0

ϑ(ζ)dζ =
Γ − 3

(Γ − 1)3
+

(Γ + 1)

(Γ − 1)3
e1−Γ,

CQ =

∫ 1

0

Φ(ζ)dζ =
Γ2 − 5G + 8

(Γ − 1)3
− (Γ + 3)

(Γ − 1)3
e1−Γ. (3.22)

Substituting (3.15) in (3.21) yields the ordinary differential equation for the bottom temper-
ature TD:

dTD
dt

=

{
(Qs −QD)∆h(1 − 2CTT ) +

dh

dt
∆T
[
2CQ(CT∆h−D) − ∆hCT (1 + 2CTT ) + 4CTTD

]
+

dCT
dt

∆T∆h2(1 − 2CTT )+

dCTT
dt

2∆T
[
h2CT + D2(CT − 1) + hD(1 − 2CT )

]}
/

(∆h2CT − 2∆hDCTT ). (3.23)

Now we have two ordinary differential equations (3.15) and (3.23) and three unknowns Ts,
TD and h. An equation for mixed layer depth h (the entrainment equation) is needed to close the
problem.

3.2.3 The entrainment equation

The entrainment equation can be achieved from the TKE budget in the UML. As first approxi-
mation, let us assume following Niiler & Kraus (1977) the TKE budget be in equilibrium with
external forces. Alternatively, certain scaling hypotheses can be applied to time rate of change
of the TKE, as it was done e. g. in (Spigel et al. , 1986; Zilitinkevich, 1987). Such scaling is
considered based on TKE similarity hypothesis in Chapter 5 while modeling radiatively-driven
convective mixing below the temperature of maximum temperature (see Section 5.2.2). How-
ever, there exist generally two TKE generation mechanisms, which we have to parameterize in
the present model: convection driven by negative surface buoyancy flux and shear stress at the
UML boundaries. The interaction of these mechanisms is rather complicated and has no adequate
description yet. In this case, a parameterization is possible only through essential simplifications
and introducing additional terms scarcely follows in better model predictions. Then, integrating
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(3.5) from the lake surface to the UML base h yields,

0 =

∫ h

0

〈w̃ũ〉 ∂U

∂z
dz + w̃(e +

p̃

+0

)

∣∣∣∣∣
h

0

−
∫ h

0

Bdz −
∫ h

0

εdz. (3.24)

Buoyancy flux derivation. Integrating (3.17) from 0 to h yields the integral buoyancy flux
within the UML (the term B in Eq. 3.24):∫ h

0

Bdz =
hBh

2
+

h

2

[
Bs + β

(
I0 + I(h) − 2

h

∫ h

0

I(z)dz

)]
=

hBh

2
+

w3
∗R
2

. (3.25)

Here, Bs and Bh are the turbulent buoyancy fluxes across the UML boundaries and w∗R is the
convective velocity scale analogous to the Deardorff (1970a) convective scale extended to take
into account the radiation absorption within the mixed layer. The last equation represents the
rate of change of the potential energy within the UML on account of buoyancy forces.

In classical mixed layer models, the layer below the UML, where the turbulence develops on
background of strong density stratification, is parameterized either as density jump of zero depth
(“zero-order jump” approach, Kraus & Turner 1967; Lilly 1968; Zilitinkevich 1991) or by means
of linear approximation for vertical profiles of physical properties (“fi rst-order jump” approach,
see e.g. Betts 1974; Spigel et al. 1986). For zero-order jump approximation, the buoyancy flux
at the UML base Qh is written as:

Bh =

{
∆bḣ if ḣ > 0

0 if ḣ ≤ 0
,

or using our notation,

Bh = H
(
ḣ
)

∆0b,

where ∆0b is the buoyancy jump below the UML and the function H
(
ḣ
)

has the same meaning

as in Eq. (3.18).
The parameterization of the turbulence within the stratified layer developed in Chapter 2

allows us to define the turbulent flux condition at the UML base as

Bh − w̃(e + +−1
0 p̃)

∣∣
z=h

= ∆bH
(
ḣ
)

Φ(ζ, ϑ,Γ), (3.26)

where ∆b is the overall buoyancy difference across the stratified layer and the dimensionless
function Φ is defined by Eq. (2.32).

Shear TKE generation. When dealing with shear generation term (the first term on r.h.s in Eq.
3.24), it is common to assume it be proportional the external TKE input from the atmosphere u3

∗
(Kraus & Turner, 1967; Niiler & Kraus, 1977; Spigel et al. , 1986). The background physical
mechanism can be treated as follows: the mean velocity shear ∂U/∂z exists at the surface in
relatively thin layer of depth δ and at the UML bottom, while the rest of the mixed layer moves
uniformly, like a slab. If the momentum flux within the layer δ is set as near constant, one
achieves, with account of the boundary condition (3.7):∫ δ

0

〈w̃ũ〉 ∂U

∂z
dz = 〈w̃ũ〉S

∫ δ

0

∂U

∂z
dz = u2

∗(Uδ − U0), (3.27)
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where velocity jump (Uδ − U0) is parameterized using of the bulk formula:

(Uδ − U0) = Cu∗. (3.28)

The shear stress generation at the thermocline bottom as well as TKE flux at the surface w̃(q/2+
+−1

0 p̃)
∣∣
z=0

assumed in their turn be proportional to the TKE generation at the surface.
Thus, we arrive the simplest TKE budget equation accounting of the wind driven shear tur-

bulence on background of convective mixing:

∆bH
(
ḣ
)

Φ(ζ, ϑ,Γ) = −w3
∗R/h + 2(m′u3

∗/h− ε̄), (3.29)

where m′ is an empirical constant and ε̄ is a mean TKE dissipation rate within the UML.

TKE dissipation rate. For parameterization of the dissipation term in Eq. (3.29) two ways are
usually followed. The first one assumes the dissipation be proportional to the sum of generation
terms (Kraus & Turner, 1967; Niiler & Kraus, 1977). The other way consists of derivation an
expression for ε̄ from dimensional analysis. The expression

ε̄ ∝ ē3/2/h, (3.30)

where ē is the mean TKE inside the mixed layer, was introduced by Mahrt & Lenschow (1976)
in application to convectively mixed atmospheric CBL. It was later used by Spigel et al. (1986)
for modeling the diurnal mixed layer in lakes. A usage of the dimensional analysis implies
similarity of the modeled process in relation to the scales used as independent variables. The
convective mixing is a large-scale process encompassing the whole UML, so the mixed layer
depth h is the decisive scale of mixing by convective cells. On the other hand, a validity of h as
a scaling variable for wind mixing is rather questionable. The similarity hypothesis for the TKE
and dissipation rate profiles within the UML will be used in Chapter 5 when dealing with purely
convective mixing in ice-covered lakes. Yet in the present model the Niiler & Kraus (1977)
formulation is preferred, as incorporating “ just about all that can be said with any confidence
about the underlying physical processes” (Niiler & Kraus, 1977). Thus, we can rewrite (3.29) as

∆bH
(
ḣ
)

Φ(ζ, ϑ,Γ) =
−w3

∗R + C0 [H(w3
∗) + H(w3

R)] + C∗u3
∗

h
, (3.31)

with new “combined” empirical coefficients C0 and C∗ including the energy sink on account
of viscous dissipation (see Niiler & Kraus 1977 for details). The term on C0 is written in the
particular form with the convective velocity scale w∗R divided into two parts: the one specified
by the surface buoyancy flux (Deardorff velocity scale w∗) and that from heating by penetrating
radiation wR:

w∗R = w∗ + wR; w3
∗ = hBs; (3.32)

w3
R = hβ

(
I0 + I(h) − 2

h

∫ h

0

I(z)dz

)
.

It reflects the fact, that both of them can be either positive or negative appearing respectively as
a source or a sink of the TKE. While the radiative heat flux is never negative, the corresponding
buoyancy flux changes his sign in fresh water lakes through the buoyancy parameter β if tem-
perature drops below the maximum density value. The surface cooling has in its turn stabilizing
effect in these conditions and do not contribute turbulence energy generation, that excludes w∗
from the dissipation rate parameters.
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Particular cases of the UML development. Depending on prevailing sources and sinks of the
TKE, different terms in Eq. (3.31) become crucial for the mixed layer evolution. Below some
asymptotic cases are considered.

Strong surface cooling. If the air temperature is much lower than that of lake surface,
strong convective mixing develops overshooting wind driven mixing. The situation is typical for
summer nights. The winds are usually very weak over the lake surface on account of night breeze
and there is no solar radiation, so the surface flux convection is the only mixing mechanism.
Excluding u∗ and radiative term from Eq. (3.31) one gets,

ḣ = − C1Bs

∆bΦ(ζ,Γ)
, (3.33)

where C1 = (1 − C0), which expression specifies the entrainment flux as a constant fraction of
the surface buoyancy flux:

Bh/Bs = const.

Entrainment equation in this simplest form was originally deduced for modeling of the atmo-
spheric boundary layer (Betts, 1973; Carson, 1973; Tennekes, 1973). As it follows from (3.33),
the entrainment always present in this case leading to unlimited increasing of the UML depth. In
reality, the entrainment decelerates on account of the growing stratification below the UML, ∆b
and can be arrested by the lake bottom in shallow lakes.

Surface cooling balanced by radiative heating If in addition to surface cooling there is
solar radiation penetrating into the upper layers of a lake, it will restrain the convection and the
equilibrium will be established at some UML depth heq, at which the entrainment cannot further
develop. Thus, the l.h.s of (3.31) turns into zero and the equilibrium depth is determined as,

heq =
2
∫ h

0
I(z)dz

C0Qs + (I0 + I(h))
. (3.34)

This situation is rather rare in small lakes since the air temperature is usually higher than that
of the lake surface during the insolation periods on account of heat exchange with surrounding
land. However, such equilibrium is typical for the oceanic upper layer (Soloviev, 1979; Soloviev
& Vershinskii, 1982) and was firstly modeled by Kraus & Rooth (1961). A non-stationary mixed
layer model was developed by Mironov & Karlin (1989), who also demonstrated the relevance
of (3.34) for heq estimation in contrast to frequently used “ thermal compensation depth” (Woods,
1980) – the thickness of the water column absorbing radiation sufficient to compensate the heat
loss at the surface.

Destabilizing by radiative heating Another regime of buoyancy-driven mixing exists only
in fresh waters at temperatures less than the maximum density value. As it has been mentioned
above, the penetrating solar radiation plays destabilizing role in this situation. The peculiarity of
the convection process in this case is that the instability source is not concentrated at the bound-
ary but distributed vertically over the absorbing layer. Two natural examples of this regime are
convective mixing in melting water over the sea ice and the spring convection in ice-covered
lakes. In the first case, the relatively thin layer of water develops on the ice surface during spring
melting; the temperature at the bottom of this layer is fixed at the freezing point, while the rest
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of the water column warms up by solar radiation absorption. Since the absorption is vertically
distributed with upper layers gaining more heat, the instability occurs leading to intensive ver-
tical mixing. This mixing supplies the ice-water interface with an additional heat accelerating
significantly the melting process; the contribution of the convection should be taken into account
for adequate prediction of ice conditions in polar seas (Townsend, 1964).

In late winter at moderate and polar latitudes, when the snow cover over the lake ice disap-
pears, the amount of the solar radiation penetrating the ice increases significantly resulting in
convective mixing similar to that described above. The entrainment rate can be derived in this
case from (3.31) with neglecting of the heat flux from water to ice, as:

ḣ∆bΦ(ζ, ϑ,Γ) = −C1

[
β

(
I0 + I(h) − 2

h

∫ h

0

I(z)dz

)]
= −C1w

3
R/h. (3.35)

The convection of this kind can present in polar lakes during the most of the year, determining,
among the temperature structure, the chemical and biological conditions in a lake (Hawes, 1983;
Matthews & Heaney, 1987; Kelley, 1997). In addition, the regime provides the ideal example
for studying convectively-driven mixing in natural conditions in absence of shear turbulence.
In chapter 5 a particular analysis of the radiatively-driven convection is performed by means
of non-stationary mixed-layer model and by comparison of modeling results with observational
data from different sources.

Wind mixing in the stable UML If buoyancy flux at the lake surface is positive, it will
oppose the mixed layer deepening until an equilibrium state between wind-driven mixing and
stabilizing buoyancy flux will establish at some UML depth heq. If there is no wind, this depth is
identically zero, the water column is fully stratified and Eq. (3.31) has no sence. Otherwise, Eq.
(3.31) takes the form:

0 = −
[
Bs + β

(
I0 + I(heq) − 2

heq

∫ heq

0

I(z)dz

)]
+ C∗

u3
∗

heq
. (3.36)

Assuming the whole amount of the solar radiation be absorbed within the mixed layer, the ex-
pression for the equilibrium depth becomes,

heq = −C∗
u3
∗

Bs

= −C∗L∗, (3.37)

where L∗ is the Monin-Obukhov (MO) length scale. Kitaigorodski (1960) was the first who
proposed the MO scale as a measure for wind-mixed layer in the ocean. It can be seen, that as
soon as the buoyancy difference ∆b on l.h.s. of (3.31) was excluded from consideration, heq not
more depends on the lake stratification. Moreover, if the surface flux Bs is close to zero, the
UML depth tends to infinity even on weak winds. This behavior is the direct consequence of
scaling of shear mixing terms in the TKE budget (3.24) on the surface friction velocity u∗. Such
scaling does not take into account the local character of the wind induced turbulence (Nieuw-
stadt & Duynkerke, 1996). Zilitinkevich & Mironov (1996) proposed an alternate derivation of
heq from Eq. (3.24) based on parameterization of the mean velocity profile in the UML using
stability correction function concept as it formulated by Hinze (1959). The correction function
was chosen in such a way, that the resulting expression for the equilibrium depth combines the
MO length with other two length scales characterizing the UML deepening. The first one is the
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Ekman length scale characterizing the UML depth in absence of the buoyancy flux (Rossby &
Montgomery, 1935):

Lf = u∗/f, (3.38)

where, f = 2Ω sinϕ is the Coriolis parameter,
Ω = 7.29 · 10−51/s, is the angular frequency of the Earth rotation,
ϕ is the lake’s latitude.

The second length scale represents dependence of heq on the underlying stratification (Kitaig-
orodskii & Joffre, 1988):

LN = u∗/N, (3.39)

where N is the Brunt-Väisälä frequencybelow the UML:

N =

√
1

+

d+

dz
. (3.40)

The resulting equation for heq is (Zilitinkevich & Mironov, 1996, Eq. 26):(
fheq
Cnu∗

)2

+
heq
CsL

+
Nheq
Ciu∗

= 1; (3.41)

here the coefficients are:

Cn = 0.5; Cs = 10; Ci = 20.

The question about the value of N to be used in (3.41) is open. Physically motivated ones can be
both the average value in the thermocline N = 1/(D − h)

∫ D
h

Ndz and the value just below the
mixed layer Nh = N |z=h+0. As a rule, the second value is the largest one in the thermocline, so
we use it. Substituting (3.2) in (3.3), differentiating the latter on z and using (3.40), we can write

Nh =

√
αT (Ts − TD)(Ts − T0)

1 − αT/2(Ts − T0)2

dϑ

dζ

∣∣∣∣
ζ=0

. (3.42)

The ϑ derivative can be easily found as a function of Γ differentiating (2.28) on ζ and substituting
ζ = 0 into result.

Convective UML deepening on background of wind mixing Equation (3.41) represents
an equilibrium mixed layer depth, i.e. the depth the layer can achieve in case of permanent con-
stant positive surface heat flux. An expression for time changing of wind-driven mixed layer
depth can be written as following relaxation equation (Nieuwstadt & Duynkerke 1996, Nieuw-
stadt & Tennekes 1981):

dh

dt
=

hs − h

τ∗
. (3.43)

here, hs is the equilibrium depth as it is found from (3.41).
There are different estimations for the time scale τ∗ in Eq. (3.43). These are, e.g.

i. The Coriolis scale τ∗ ∼ 1/f
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ii . Combination of the Monin-Obukhov length scale and of the shear velocity τ∗ ∼ L/u∗ =
u2
∗/(βQs)

iii . Normalized heating rate τ∗ ∼ ∆T (dTs/dt)−1

The typical estimations of these time scales for temperate lakes not exceed one day. Thus, we
can assume the wind-mixed layer be adjusted to the heq value within the daily time step of the
model.

Convective mixing develops relatively slow in relation to the wind mixing. so we should
solve a differential equation (3.31) for ḣ as a function of surface heat flux and wind. However, at
small negative values of the surface heat flux, the entrainment equation in form (3.31) will lead
to infinite growth of the UML depth h. This unrealistic situation is a consequence of using the
UML depth as a length scale for local wind-driven turbulence. In order to take into account the
local character of wind mixing, the entrainment equation for negative surface heat flux is written
in following form:

ḣ =

{−C1w
3
∗ + w3

R

h
+

C∗u3
∗

h
Fh (heq − h)

}{
∆bΦ(ζ, ϑ,Γ)

}−1

, (3.44)

where heq is defined by Eq. (3.41) and Fh is the Heaviside function defined as:

Fh (x) =

{
1 at x ≥ 0
0 at x < 0

(3.45)

A number of estimations for constants C1 and C2 was made based on results of laboratory
modeling, observational data and large eddy simulations (see e.g. Spigel et al. 1986; Zilitinke-
vich 1987, 1991; Kreiman & Kirillin 1998 for reviews). Here we accept the values proposed by
Zilitinkevich (1991):

C1 = 0.2 C∗ = 5

3.2.4 Basin’s depth limited mixed layer

During periods of strong surface mixing the mixed layer depth can achieve the lake’s bottom. On
each time step the condition h < D have to be checked. If the condition does not hold true, the
lake supposed to be fully mixed vertically:

h = D
TD = Ts

}
if h ≥ D. (3.46)

Now the equations system is closed. The peculiarity of the algorithm consist of determining on
every time step which equation for h should be used depending on the surface heat flux direction.
If Qs > 0 the system of two ODE’s (3.23) and (3.15) should be solved in couple with algebraic
equation (3.41) assuming ḣ = 0; if Qs < 0 the problem consists of three ODE’s (3.23), (3.15)
and (3.44). The surface heat flux is calculated in its turn using the Ts at previous time step.

3.3 Algorithm realization

3.3.1 Input data

Input information can be organized into following two groups:



44 CHAPTER 3. TEMIX MODEL DESCRIPTION

External information The first group includes:

• Basin characteristics

– The average lake depth D.

– Latitude ϕ, which used in the Coriolis acceleration estimation.

• Meteorological time series, which include:

– Incoming solar radiation.

If the radiation is measured over the water surface or over the land, additional infor-
mation about the albedo of water surface should be provided. The model includes the
Payne (1972) algorithm for albedo calculation based on atmospheric transmittance
data.

– Wind speed.

– Air temperature.

– Air humidity.

The above three variables are used for estimation of turbulent momentum and heat
fluxes at the surface. The algorithm is based on hypothesis of self-similarity of wind,
humidity and temperature profiles in boundary layer, so the elevation of measure-
ments point above the lake surface should be provided in order to reconstruct the
characteristics profiles over the lake.

– Cloudiness.

The algorithm of long-wave radiation evaluation provides the possibility of calcula-
tion of radiation emission by clouds with account of vertical cloudiness distribution.

• The heat flux at the water-sediments interface QD.

The value of QD can be an external parameter or can be calculated using the algorithm
described in (Golosov & Kreiman, 1992). The value of the temperature gradient at the
bottom Γ is derived then from the bottom heat flux as:

Γ =
QD

KD

(D − h), (3.47)

and the expression for time derivative is, correspondingly

dΓ

dt
=

[
dQD

dt
∆h−QD

dh

dt

]
/KD, (3.48)

where KD is a characteristic value of the heat diffusion coefficient at the water-sediments
interface, which depends on sediments properties.

• Initial values of the surface temperature Ts,bottom temperature TD and mixed layer depth
h.

The values are to be derived from available observational data, a reasonable guess can be
adopted alternatively.
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Parameters of the calculation The second group consists of:

• Time step dt.

Since diurnal averaging underlies the model philosophy, the time step is supposed to be
not less than 24 hours. Depending on required accuracy and available input data, a larger
value can be chosen.

• The time frame of calculations.

The start and stop moments have to be specified, that gives, in couple with the time step,
the dimensions of the output arrays.

A simple graphical user interface was developed for the model using MATLAB� program-
ming environment. The appearance of the input window is shown in Fig. 3.3.

Figure 3.3: TeMix input window.

3.3.2 Calculation

Calculations are organized inside a time loop. The structure is subdivided into following logical
blocks:
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ODE solver subroutine A subroutine performing one of the standard algorithms of ordinary
differential equations system solution. Currently the simplest one-step Newton algorithm
is used. Other methods (e.g. one of the Runge-Kutta methods) can be also implemented.

The program takes as input the array of function values X(m) at previous time step,
the main time step dt and a reference to subroutine-function which calculate the array
of derivatives dX/dt. The return value is X at new time step.

derivatives subroutine The block, where model equations are solved. It is called by ODE solver.
In our case, the equations set varies during calculations depending on the Qs sign. Thus,
the subroutine receives an additional parameter-flag in order to define which equations set
should be solved.

a set of subroutines for self-similarity functions calculation The dimensionless funcltions ϑ
and Φ as well as their integrals and derivatives present in the model equations. All of them
depend on time through the dimensionless bottom gradient Γ (2.28).

Differentiating (3.14) and (3.22) with regard to t and using (3.48) one gets expressions for
dCT/dt and dCTT/dt, which are then substituted in (3.15) and (3.23).

3.3.3 Output

The output includes 1xN arrays of Ts, TD, Γ and h. The vertical temperature profile at any given
time can be then reconstructed using Eqs. (2.28) and (3.2).



Chapter 4

Application of the TeMix model to the
Lake Müggelsee

4.1 Site description and data set

The Lake Müggelsee is a shallow polymictic lake located in the eastern part of Berlin, with
co-ordinates 52o26′N and 13o39′E (Fig. 4.1). The mean depth of the lake is 4.9 m. and the
maximum one is about 8 m. Owing to its location the lake undergoes a significant anthropogenic
impact due to urbanization of surrounding area and river Spree basin. During the last century
significant changes in ecological state of the lake were indicated, resulted in essential increasing
of plankton and seston contents in lake water (Behrendt et al. , 1990). Since 1978 regular moni-
toring of the the Lake Müggelsee ecosystem has being performed by Institute of Water Ecology
and Inland Fisheries, Berlin (Driescher et al. , 1993). The monitoring includes meteorological
observations at the station m1, located at the institute’s pier near the northern shore of the lake
(Fig. 4.1). The observations consist of hourly readings of the solar radiation, near-surface air
temperature, humidity and wind vector as well as water temperature measured at 0.5 m. beneath
the surface. In addition, the subsurface short-wave radiation is measured at two depth levels
allowing estimation of the light extinction in the lake water. Vertical temperature profiles are
collected weekly at the deepest point of the lake (depth ≈8 m, station m7, Fig. 4.1). The mete-
orological conditions over the lake are characterized by relatively weak winds. The wind speed
probability distribution is close to lognormal and about 70% of wind speeds are less than 4 m/s,
(Fig. 4.2). The distribution of the local wind directions is characterized by strong predominance
of south-west winds drawing up along the main axis of the lake that is conditioned by the sur-
rounding landscape (Fig. 4.3). Thus, the general wind mixing conditions at the air-lake interface
can be treated as having the constant fetch, favoring application of the 1-dim model to the lake.
The morphometry of the lake is also in a good agreement with the one-dimensional assumption:
the pan-like shape of the lake (see hypsographic curve in Driescher et al. 1993) allows approx-
imating it by a parallelepiped that excludes lake area variations with depth from consideration.

Another factor potentially destroying the one-dimensional structure in the lake is the inflow
of River Spree. Considering difference in the heat content between the river and lake waters, one
can distinguish a certain regularity in its seasonal variations. This is illustrated in Fig. 4.4 using
temperature data of 1993. A notable difference in the temperatures exists in spring and autumn
periods, before and after of the summer stratification. In spring, river waters are apparently
warmer than those of the lake, and own, therefore, positive buoyancy. That will lead to spreading
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Figure 4.1: The Lake Müggelsee study site and measurement points location. m1: Meteorological station of the Institute of Freshwater Ecology
and Inland Fisheries (meteoparameters, water temperature and transparency measured hourly). m3: The river Spree inflow (water temperature
and discharge measured weekly). m7: The deepest (8 m) point (water temperature and chemical components measured weekly.)
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Figure 4.2: Wind his-
togram built on data
from the the Lake
Müggelsee meteorolog-
ical station m1 for the
period 1979-1996.
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Figure 4.3: Wind rose
for the Lake Müggel-
see: solid line - data
from the Müggelsee
meteorological station
m1 for 1979-96, dashed
line - climatic data for
the Berlin area from
(Kohl 1969).

of the river jet over the lake surface without significant influence on the vertical structure. During
autumn cooling, the colder and denser should plunge in a stratified lake to a depth with the
same density and spread further along the isopycnal surfaces. As it was shown in Section 1.2,
effect of this plunging on the vertical structure of a lake can be estimated from balancing density
gradient and inertial forces, expressed by the internal Froude Number Fr (1.5) and the modified
Wedderburn Number W̃ (1.6). Using typical values for the River Spree discharge 4-22m3/s
with average value 9m3/s, Fr lies in range 0.01-0.04 and W̃ is about 20-50. The fact that the
Froude Number is much less than one indicates the density perturbations to be localized in the
vicinity of the inflow, and large Wedderburn Numbers allow us to say that the one-dimensional
assumption can be applied to the lake to a good accuracy. During the summer, the temperature of
the inflow do not differ from that at the lake surface more than by 1◦C and is typically higher. It
allows concluding that the river input in the lake heat budget is minimal in summer. In spring and
autumn, the river influence should be generally taken into account, although the one-dimensional
approximations remains valid here. The simplest way of accounting the heat inflow from the river
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Figure 4.4: Temperature jump
∆T between the river inflow
(measurements point m3 in
Fig. 4.1) and lake surface water
(measurements point m7), and
corresponding buoyancy b of the
river plume, 1993.
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consists in addition of the river-conditioned heat flux to the flux at the surface Qs.

Calculations of the lake temperature evolution were performed using TeMix model for sum-
mer heating periods of 1980-1999. For estimation of the heat fluxes at the lake surface, data
from the meteorological station m1 were used. The time span for calculations is chosen based
on available measurements data and covers the heating periods from April till November of each
year that allows tracing the thermocline formation and destroy in summer. During the cold period
of year the lake is entirely mixed in vertical direction that would simplify the model to solving
the only one equation (3.12). Such simple one-equation models give generally good results for
well-mixed temperate lakes (see e.g. Ljungemyr et al. 1996) and are of minor interest in scope
of the current study.

The air temperature, air humidity and wind speed readings at 2 m. over the lake surface
were used for calculation of the sensible and latent heat fluxes and of the friction velocity. The
sensible heat flux and momentum flux across the air-lake interface were calculated following
the procedure described in (Mironov, 1991). The algorithm includes calculation of the sensible
and latent heat fluxes from the measurements of air temperature, air humidity and wind speed
at a given height together with the water surface temperature taken from model predictions at
the previous time step. The short-wave solar radiation measured directly over the lake surface
was transformed in subsurface values by subtraction of the reflected part. Albedo of the water
surface was calculated from atmospheric transmittance (the ratio of measured insolation to the
no-atmosphere insolation) using the method described in (Payne, 1972). In addition, the solar ra-
diation data from the standard meteorological observations at the Potsdam meteorological station
(52.38◦N,13.52◦E) were used for verification of the local observations.

The emission of the long-wave radiation by the water and by the atmosphere was estimated
from the air temperature and air humidity measurements at the m1 station and the water tempera-
ture values predicted by the model using the bulk algorithm described in (GGO manual 1982, see
also Fung et al. 1984). Information about the cloud conditions is not collected at the lake station
and was adopted from the Extended Edited Cloud Reports (Hahn & Warren, 1999), allowing
estimation of the long-wave radiation emission by cloud cover.
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4.2 Prediction of the surface temperature and stratification
occurrences

The initial model calculations were performed with the solar radiation data from the lake me-
teorological station m1 (see Fig. 4.1). The model results exhibited in this case a regularity in
the prediction error: when the model predicted the surface temperatures in 1990-1999 fairly well
and errors had rather random nature, the temperature estimations for 1980-1989 had a systematic
positive bias, achieving few degrees in magnitude. In order to verify the input information qual-
ity, the incoming solar radiation values measured at the m1 station were compared with those
from the Potsdam meteorological station. The comparison clearly shows an overestimation of the
insolation values by the sensor at the lake station in the eighties and a good agreement between
the both data sources afterwards (Fig. 4.5). Correction of the model input by accepting the Pots-
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Figure 4.5: Incoming solar
radiation I0 measured over
the lake at the m1 point
(green) and at the Potsdam
meteorological station (blue)
averaged over summer peri-
ods.

dam insolation values resulted in a reasonable agreement between the predicted temperatures and
observations. An example of the surface temperature evaluation with different radiation inputs
is shown in Fig. 4.6. The overestimation of radiation values by the sensor installed over the lake
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Figure 4.6: Surface temper-
ature Ts evolution in 1986.
1,2 - Ts calculated: 1 - using
I0 from Potsdam , 2 - using
I0 from m1; 3 - Ts measured
at m1.

surface was probably caused by additional short-wave radiation reflected by the water. In 1990
the construction of the measuring station was improved providing only the downward radiation
be measured. As seen in Fig. 4.5, it resulted in decreasing of measured quantities that brought
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them in accordance with Potsdam measurements. For years after 1990, both solar radiation in-
puts lead to similar model output with slightly better prediction when direct measurements over
the lake are used. (Fig. 4.7).
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Figure 4.7: Surface temperature Ts (up) averaged over summer period and error in it’s estimation
(Ts − Tsmes) (middle). blue-circles: with solar radiation input from m1, green-squares: using
Potsdam solar radiation data, red-diamonds: measured surface temperatures Tsmes.

The small difference in measured radiation values at the two points and, as a result, in model
predictions are caused apparently by the local cloudiness variability. Being more representative,
the measurements data from the m1 station was used as the model input for years 1990-1996,
while the short-wave radiation data from the Potsdam station were adopted in calculations for
1980-1989.

This example illustrates a “ feedback” between a lake dynamics model and observations.
Modeling results provoked a revision of observations data and allowed uncovering uncertain-
ties in the measurements. It speaks also to the advantage of the model’s reliability: the model
responds adequately to changes in the input data and predicts the real situation well if and only
if the input is correct.

The general modeling results for all simulated years are shown in Figure 4.8. The year 1982
is excluded from consideration, since the were no meteorological observations performed at the
lake station m1 in this period.

In the figure three outputs TS , TD and h of the parameterized model are drawn in comparison
to their observed values. These three parameters define the vertical temperature profile, which
can be reconstructed for any moment of time using Eq. (3.2). As it was mentioned before,
diurnal averaging of real processes is one of the essential assumptions underlying the model, so
the model profiles can differ from instantaneous measured profiles without affecting, however,
the model adequacy at larger time steps. The validity of the parameterized profile representation
(3.2) was discussed in Section 2.3 and we concentrate here only on the parameters prediction.
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Figure 4.8: Results of the Lake Müggelsee thermal structure modeling. Red solid lines: measured
surface temperature; red dotted lines: bottom temperature; black lines with filling areas represent
the surface and bottom temperature values given by the model. Solid lines in lower part of plots
show the UML depth.
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Figure 4.8: continued
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Despite essential reductionism of the model, the simulation results are in good agreement with
observations for all years. The model predicts well the temperature of the mixed layer as well as
occurrence and destroying of the vertical stratification in the lake. The first result is important
for possible integration of the model in modeling of atmosphere dynamics for estimation of the
temperature and of the heat flux at the atmosphere’s bottom. The information about the vertical
stratification in a lake is essential in its turn for modeling of lake ecosystem components.

In some years (1984-1989) the model overestimates autumn temperatures during the whole
autumn cooling period by 1-2◦C. In other years, particularly in nineties, the agreement between
predicted and measured temperatures is quite good. One possible reason of this disagreement
can lie in neglecting of the river inflow influence, which can be important in autumn, as it was
discussed in Section 4.1. On the other hand, the systematic error in eighties can result from
uncertainties in measurements during this period, similar to that found in solar radiation mea-
surements revealed above.

For relatively long stratified periods, the model tends to overestimate the near-bottom tem-
perature (the plots for 1980, 1986, 1995 in Fig. 4.8). The disagreement is much less for large
lakes but becomes more apparent when the model is applied to small shallow lakes, where the
vertical stratification appears occasionally for several weeks. The similar overestimation was
obtained with the previous version of the model when modeling temperatures in lakes Krasnoye,
Russia and Windermere, Great Britain (S. Golosov, pers. comm.). Physically, that means an
additional sink of the TKE in the water column, which is not taken into account by the model.
Unlike the previous TeMix version, the current model entertains the vertically distributed ab-
sorption of the solar radiation, which results in dampening of the vertical mixing intensity and
consequently in stronger vertical stratification. The remaining discrepancy between measured
and predicted bottom temperatures can be ascribed to the TKE loss on account of internal se-
iches breaking in a stratified lake. Such breaking appears on sloping lake boundaries and leads
to dissipation of the mixing energy here and as a result, to weaker mixing in deeper layers (Ivey
& Nokes, 1989; Ostrovsky et al. , 1996). Apparently, the influence of sloping boundaries on
the horizontally averaged temperature structure is stronger in small lakes. A parameterization
of the TKE dissipation at the bottom slopes in frames of 1-dim approach will certainly improve
the simulation of such strongly stratified cases. Furthermore, one should take into account that
the observations presented here are performed at the deepest point of the lake and can be used
only as a rough estimation of the lake-averaged bottom temperature, whereas real values can be
significantly higher.

Figures 4.9 and 4.10 shows an example of the modeling results for the year 1993 in more
detail. The calculated values of the surface temperatures (red line in Fig. 4.9) are very close
to measured ones and the disagreement lies within confines of the horizontal variability in the
water temperatures (the difference between data from the near-shore station m1 and those from
the deepest point of the lake m7, which difference does not exceed in its turn half a degree).
The vertical temperature difference is also predicted fairly good (Fig. 4.10), even for the very
short appearances of weak stratification in the end of September. The results support the general
assumptions lying in background of the TeMix and demonstrate the model be a trustworthy tool
for the lake surface temperature prediction.



56 CHAPTER 4. THE LAKE MÜGGELSEE MODELING

Jan Apr Jul Oct Jan
0

5

10

15

20

25

T
s, 0 C

Figure 4.9: Surface temper-
ature evolution in 1993 from
IGB meteo station m1 (solid
blue line), from m7 mea-
surement point (blue dotted
line and triangles) and that
achieved with TeMix mod-
eling (solid red line)

Jan Apr Jul Oct Jan
  2

0

2

4

6

8

T
 - s  T

D
, 0 C

Figure 4.10: Surface-bottom
temperature difference in
1993 at the deepest point
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triangles) and that achieved
with TeMix modeling (solid
red line)

4.3 Mixed layer depth prediction. Comparison with observa-
tions and with turbulence closure models

An important part of the model output is the upper mixed layer depth. It’s value is a fundamental
parameter characterizing the vertical structure of the lake and is used as appropriate length scale
in ecological modeling. An example of the UML depth prediction by the model is shown in
Figure 4.11. In order to examine the reliability the calculated value, gradients of the temperature
and the oxygen concentration as they measured at the m7 point are presented at the same figure
as two-dimensional time-depth plots. The comparison with the O2 concentration is performed
here since this characteristic is more sensitive to mixing and gives often a better performance
in the mixing layer definition (Behrendt et al. , 1993). An overall agreement can be seen at
both plots, probably more distinct when compared with the oxygen distribution. It is relatively
difficult, however, to estimate the validity of the model prediction for the UML depth on the
available observations data. Vertical profiles of the water temperature and O2 concentration were
taken at m7 only once a week, that does not allow to trace the UML evolution carefully. In
order to evaluate the model additionally, the TeMix predictions were tested against the results
of two-equation turbulence modeling.

Comparison of the bulk model TeMix performance with turbulence closure models is of ap-
parent interest per se. The two-equations modeling approach in form of k-ε and Mellor-Yamada
k-kL models have became to the moment a “standard” in modeling of vertical structure of nat-
ural water bodies. Ranking between simple but often coarse bulk models and more precise
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Figure 4.11: Measured temperature (up) and oxygen concentration (down) vertical gradients in
comparison with the calculated mixed layer depth (solid line). Müggelsee, 1993

but computationally cumbersome methods such as large-eddy simulation (LES) and direct nu-
merical simulation (DNS), the turbulence closure models are the most exploited compromise in
engineering and research applications related to 1-d vertical modeling of geophysical turbulent
flows. This kind of models is however not a priori a better choice for lake modeling than param-
eterized bulk-models. While using direct numerical solution of the differential TKE transport
equation, the models involve eddy-diffusivity concept where stratification influence is modeled
by means of so-called stability functions (see e.g. Burchard & Bolding 2001), which definition
supposes essential arbitrariness and has often an obscure physical meaning. The relevance of
the eddy-diffusivity coefficient concept is questionable by itself in application to stratified lakes,
where the local shear turbulence is of minor importance compared with internal wave motions
(Imberger, 1994).

The source code of the model GOTM (http://www.gotm.net) was adopted with mi-
nor modifications allowing its implementation on the PC platform. The code is aimed at two-
equation turbulence modeling in both k-ε (Svensson, 1978) and Mellor-Yamada (Mellor & Ya-
mada, 1974, 1982) variants with different parameterizations for the stability functions. Here, the
second-moment closure is used proposed by Canuto et al. (2001), as providing the best overall
performance for the mixed layer modeling (see comparison of different schemes in Burchard &
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Bolding 2001 for further discussion).
An example of the surface temperature prediction by the k-ε and Mellor-Yamada (MY) two-

equation models is shown in Fig. 4.12. Both k-ε and MY models predict the overall tendency in
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Figure 4.12: Surface temper-
ature calculated with the k-
ε model, the Mellor-Yamada
level 2.5 model, and by
the TeMix model compared
with temperatures measured
at the m1 station, the Lake
Müggelsee, 1993

the evolution of the surface temperatures. However, the small-scale oscillations achieving 10◦C
in amplitude are distinguished in the modeling results, especially for the MY model. In con-
trast, the TeMix results are free from such instability. Furthermore, the current model predicts
correctly the autumn temperature at the lake surface after the stratification period, while the tur-
bulence models overestimate it. This fact argues in favour of the TeMix algorithm as adequately
reproducing the overall heat budget of a lake.

The vertical temperature gradients predicted by k-ε and MY models are compared with the
UML depth in the Fig. 4.13 in the way analogous to that of the Fig. 4.11. Both k-ε and MY
models produce similar vertical structure and the agreement with the UML prediction by TeMix
is clearly distinguishable: the colored areas representing the stratified parts of the water column,
are delineated by the mixed layer boundary with the good accuracy.

An alternative method of the UML depth determination from the k-ε model consist of asso-
ciating it with some marginal value of the TKE production. In Figure 4.14 the areas with the
TKE ≥ 10−5 m2/s2 as predicted by the k-ε model are compared to the mixed layer depth given
by TeMix. The agreement between the two UML depth predictions is fair.

Thus, the bulk parameterization of the vertical turbulent transport underlying the TeMix
algorithm accounts for the essential circumstances of the real vertical exchange omitting nu-
merical complexity appropriate to the two-equational turbulence models. Furthermore, the bulk
algorithm is free from numerical instability of the turbulence models. This instability results in
unrealistic surface temperature estimations by k-ε and MY models on account of rapid surface
heat flux oscillations which are in their turn typical for small lakes.

The interannual variability of the mixing regime given by the modeling results is compared in
Figure 4.15 with the weekly temperature profiles from the m7 measurements point.The predic-
tions are in satisfactory agreement with observations within the limits of measurements accuracy.
The peak in stratification continuance in 1982 is not predicted by the model, apparently on ac-
count of lack of measurements data. No meteorological observations were performed at the lake
this year and the model simulation was based on meteorological data from the Potsdam station.
In interannual variability a small trend to strengthening of stratification in nineties is predicted
by the model and can also be distinguished in the observations. It can be caused by climatic
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Figure 4.13: Temperature gradient calculated with k-ε (up) and Mellor-Yamada level 2.5 model
(down) and mixed layer depth from TeMix (red line). Müggelsee, 1993

changes, but also alterations in water transparency driven by eutrophication can lead to changes
in thermal regime of the lake. The effect of water transparency on temperatures in the Lake
Müggelsee is considered in some detail in following section.
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Figure 4.15: Prediction of the mixing regime in a polymictic lake. The number of days with
temperature stratification (above): red line is the model prediction; blue dashed lines are the
measurements at the deepest point (m7) with confidence range estimated as ±n∆t/2 where n is
the number of events (the plot below), ∆t = 1 week is the measurements frequency.
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4.4 Influence of the water transparency variability on temper-
ature structure

The important feature differentiating the current model from the previous TeMix version (Mironov
et al. , 1991) is accounting of the vertically distributed heat absorption within the UML. When
modeling the temperature evolution in deep lakes [e.g. the Lake Ladoga (Mironov et al. , 1991)
or lake Sevan (Rumiantsev et al. , 1986)], assuming all heat be absorbed at the surface produces
satisfactory results. In shallow lakes, however, such assumption suggests leads to significant
overestimation of the entrainment at the UML base (Fig. 4.16). Absorption of the short-wave so-
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Figure 4.16: Simulation results for the summer period 1994 achieved with the old version of the
TeMix model (left) and with that accounting the volumetric heat absorption inside the UML
(right ). Red solid line: measured surface temperature; red dotted line: bottom temperature;
black lines with filling areas represent the surface and bottom temperature values given by the
model.

lar radiation within the upper layer in oceans and lakes depends on optical properties of the water.
This dependence was already included in the mixed layer model formulation of Kraus & Turner
(1967) in form of the one-band exponential decay law (3.11). Dake & Harleman (1969) and
later Zimmerman et al. (1981) emphasized the role of the water transparency in vertical thermal
structure of different lakes. Most of studies dedicated to the light absorption by lake water paid
the primary attention to its role in the diurnal variability of the surface temperatures (Soloviev,
1979; Woods, 1980; Price et al. , 1986) and to different parameterizations of the radiation decay
law (Simpson & Dickey, 1981; Orlov, 1996; Hocking & Straškraba, 1999). The calculations
performed here for the Lake Müggelsee made use of simplest parameterization (3.11) with a
constant value of the extinction coefficient γ for each year. The main idea underlying the current
model consist of adequate representation of the lake thermal structure involving a minimal set
of easily available input data and a simple numerical algorithm. Therefore, it seems not relevant
to introduce more sophisticated light extinction parameterizations, as the information about the
dependence of γ on wavelength in particular lakes is often unknown. On the other hand, the
water transparency influences not only the diurnal temperature cycle but also the biological pro-
ductivity (Prézelin et al. , 1991) which controls in its turn the transparency of upper layers of
a lake. Such feedback can result in water temperature oscillations with time scales longer than
diurnal ones, conditioned by variations in the plankton biomass.

The data collected at the lake Müggelsee include the daylight attenuation measurements at the
m1 station with one hour sampling frequency. The measurements allow us to clarify the influence
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of the light extinction variability within a summer season on the lake water temperature.
The summer periods 1993-1999 was chosen for the analysis as having a minimum number

of missed data. Remaining gaps were filled by using of linear interpolation. Time evolution of
the main characteristics governing the heat exchange at the lake-atmosphere interface are shown
in Fig. 4.17. Surface temperatures achieve their maximum in the beginning of August, while
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Figure 4.17: Time series of characteristics measured at the Lake Müggelsee meteorological sta-
tion: Measured insolation, water surface temperature, wind speed and extinction coefficient.
Thick grey line in all panels shows the average values for 1993-1999. Dashed line in the left
upper graph is the “clear-sly insolation” for the given latitude.

the strongest insolation takes place over the late June (the period of the solstice). Absorption
of the solar radiation by the atmosphere and clouds can be estimated from comparison of the
measured radiation values with the clear-sky insolation for the current geographical position
(blue dashed line in Fig. 4.17). The wind speeds are generally low tending to increase in the
autumn. Warming of the lake water in the end of July is followed by extremely high values of
the extinction coefficient (3–5 m−1) and high frequencies in its variability.

Under conditions of low wind speed, the primary contribution in the surface temperature
variability makes the process of solar radiation absorption. Figure 4.18 demonstrates the cross-
spectral characteristics of this process. The figure reproduces the coherence spectrum and the
phase angle evaluated for the variable pairs I0 ↔ Ts and γ ↔ Ts (for estimation algorithm see
Emery & Thomson 2001). One can see the high coherence between I0 and Ts at frequencies
corresponding to diurnal and semidiurnal oscillations; the phase angle is positive in the whole
range of frequencies with significant coherence, indicating the lead of the radiation variability
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Figure 4.18: Coherence spectrum (left) and phase angle (right ). Solid red line: between in-
coming solar radiation I0 and surface temperature Ts; blue dashed line: between light extinction
γ and surface temperature Ts. Green vertical lines correspond to the diurnal and semidiurnal
oscillations.

relative to that of the water temperature. The interrelation between the water transparency and
the temperature (blue dashed lines in Fig. 4.18) has more complicated nature. The coherence
maximum at diurnal frequency thought exist but is much weaker than in the I0/Ts coherence
spectrum. A sufficient part of the energy is concentrated in low frequency range with a peak at
2-3 days periodicity.

Additional information about the surface temperature variability in relation to the forcing
mechanisms represent the cross-correlation graphs averaged over the years 1993-1999 in the
right panel of Fig. 4.19. Both the solar radiation and the wind speed are correlated with the tem-
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Figure 4.19: Left panel: Average cross-correlation for 1993-1999 between external forcing and
surface temperature; I0 vs. Ts (red solid line), W vs. Ts (green dash-dotted line), γ vs. Ts (blue
dotted line). Right panel: cross-correlation between γ and Ts for each year.

perature at zero time lag, whereas no significant time-shifted correlation presents. The concurrent
values of the water transparency and of the surface temperature have in its turn no remarkable
correlation. The maximum correlation is observed at negative zero lag of several days order. It
indicates the dependence of the water transparency on the surface temperatures: surface heating
is apparently followed by increasing biological production and consequently by higher values
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of the extinction coefficient. No backward influence of the water transparency on the surface
temperature is found: the correlation values at positive lags are close to zero.

The cross-correlation of the surface temperature with the solar radiation and that with the
wind speed not differ significantly from year to year being close to the average curves on the
left panel of Fig. 4.19. The interaction between Ts and water transparency demonstrates more
diversity, as it seen in the right panel of Fig. 4.19. While most of the curves show nearly the
same behavior with the correlation maximum at negative time lags, the maximum correlation in
1994 exists on positive time lags that suggests Ts oscillations be influenced by variations of γ.
This variability can be caused by alterations in mixing regime in the lake. The lake-averaged
balance between the two main mechanisms governing the near-surface mixing, solar heating
and wind, can be expressed in terms of velocity scales wR and u∗ (see Eq. 3.31), where h in
expression for wR is replaced by the mean lake depth D. The ratio of these velocity scales will
exhibit the balance between the shear TKE production and buoyancy-driven stabilization. Figure
4.20 shows this ratio averaged over summer periods. One can easily note the predominance of
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Figure 4.20: Ratio between
radiation velocity scale wR
and friction velocity u∗ av-
eraged over summer periods,
1993-1999.

buoyancy forces over wind mixing in 1994. Thus, the low mixing conditions existing in this year
provide the water temperatures be influenced by water transparency variability as it indicated by
the cross-correlation curve in Fig. 4.19. This result gives evidence of a feedback between lake
temperature and light conditions within the upper layers and suggests possible influence of lake
eutrophication on water temperature: increasing plankton production is followed by stronger
light extinction in lake and as a consequence in changes of the surface temperatures. As the
current analysis shows, this mechanism is usually suppressed by wind mixing, but can appear
important in conditions of low wind speed as it was in the Lake Müggelsee in 1994.

The predominance of stratification on account of radiatively-driven heating over the wind
mixing in 1994 explains also the significant improvement of the TeMix predictions for this year
after taking into account vertically distributed heat absorption (Fig. 4.16). Thus, the light con-
ditions can influence noticeably the temperature structure at low winds and should be taken into
consideration when modeling the vertical structure of shallow lakes. The special case represent
lakes at temperatures lower than maximum density value. In this situation the radiative heating
leads to destabilizing of the water column followed by convective mixing. The radiatively-driven
convection is practically the only mixing mechanism in ice-covered lakes, where no wind mix-
ing exists. This type of convection is considered in more details in following chapter using the
mixed-layer approach.



Chapter 5

Radiatively-Driven Convection in
Ice-Covered Lakes

Observations in ice-covered lakes (Barnes & Hobbie, 1960; Farmer, 1975; Petrov & Sutyrin,
1984; Bengtsson, 1996; Malm et al. , 1997a,b; Matthews, 1988; Terzhevik et al. , 2000) indicate
that in late spring, when the snow cover above the ice disappears, a considerable part of the water
column is well mixed and vertically homogeneous with respect to temperature. The homogeniza-
tion was shown to occur due to convection caused by absorption of short wave solar radiation
that penetrates the ice. The mechanism of TKE generation by absorption of solar radiation was
briefly examined in chapter 3. Here, we consider the regime of convection driven by radiation
heating in some detail. Data from observations in a number of temperate and polar lakes are
summarized and discussed. A mixed-layer model is applied to simulate the mixed layer deepen-
ing. The model utilizes the mixed-layer scaling and turbulence kinetic energy (TKE) budget to
derive an entrainment equation , and parameterizes the evolving temperature profile with zero-
order jump approach. A stationary solution to the heat transfer equation is applied to describe
the structure of the stably stratified layer separating a convectively mixed layer from the lower
surface of the ice. Model predictions are compared with observational data, and entrainment
regimes characteristic of convection in ice-covered fresh-water lakes are analyzed. The mixed-
layer model is then extended to account for salinity effects. Although the salt concentration is
very low in most temperate and polar lakes, it has important dynamical consequences when the
temperature is close to that of maximum density.

Apart from its prominence as a particular class of naturally occurring convection, an un-
derstanding of radiatively driven convection during spring in ice-covered lakes is required for
accurate interpretation and prediction of chemical and biological processes in lakes. For ex-
ample, convective motions help suspend non-motile phytoplankton species in the surface layer,
enhancing their growth (Baker, 1967; Matthews & Heaney, 1987; Kelley, 1997; Granin et al. ,
1999a,b). In those lakes where convection is absent, motile species dominate due to their ability
to position themselves in optimal light and nutrient environments (Hawes, 1983). Finally, the ab-
sence of mean shear ensures that convection beneath ice provides an ideal test case for turbulence
models.

5.1 A Brief Overview of Previous Studies

Water heating by radiation penetrating the ice was mentioned by Forel (1901) as the mechanism
accelerating ice melting in late spring. He did not consider the possibility of convective mixing
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development in ice-covered lakes, though he reported non-freezing holes of free water observed
in the lake Lac de Joux, that suggests inhomogeneity of heat distribution in lake water under the
ice. Later, Birge (1910) indicated that solar heating of the water under ice may cause convection.
Considering melting of the underside of the ice, he conjectured that “ . . . if the temperature rose
above 4◦C, convection currents might be set up which would subtract heat from the ice.” He did
not explicitly mention, however, that solar heating can cause convection even if the entire water
column is below the temperature of maximum density.

Götzinger (1909) had presented in his paper a few photographs of melt holes in lake ice,
similar to those described by Forel. He called them “Dampflöher” (steam holes). Götzinger
did not attribute explicitly these holes to the differential melting of the underside of the ice
caused by convective overturning of the water under the ice. However, one of these photographs
demonstrates well-defined cell-like patterns on the ice cover, indicating their convective nature.
The photograph is reproduced in the Fig. 5.1 and represents most likely the first implicit report
of convection in ice-covered lakes. Later, photographs of shallow ice-covered ponds revealing

Figure 5.1: Photograph of the ice-covered lake Mitterzee, Austria (after Götzinger 1909). The
author reported non-freezing “steam holes” (Dampflöcher) existing in the lake ice. One can see
in the photograph, that the holes lie inside hexagonal structures similar to the Rayleigh-Bénard
convective cells.

cell-like patterns were reported by Brunt (1946), Woodcock & Riley (1947), Neumann (1958),
Woodcock (1965), Zwart (1976), Katsaros (1981, 1983) and Woodcock & Lukas (1983). A
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summary of the observations and discussion on different mechanisms responsible to generation
of convective mixing under ice are given in (Mironov et al. , 2002).

The first systematic observations of radiatively driven convection in an ice-covered fresh-
water lake were reported by Farmer (1975). Detailed temperature measurements were taken
in Lake Babine, Canada, between 1 February and 13 May 1973, using thermistor chains and
an electronic bathythermograph. These revealed the temporal evolution of thermal structure,
including initiation of instability, the properties of the upper boundary layer, convective motions
within the mixed layer, the generation of internal waves at the base of the mixed layer and the
evolving temperature step produced by penetration of the convective layer into the stable fluid
beneath. Farmer (1975) developed a time dependent mixed layer model that accounted for the
distributed buoyancy source and was matched to a stable boundary layer solution beneath the
ice. In this study the theory was extended to allow for the effect of pressure on the temperature
of maximum density, which is 0.02 K·b−1 and can become quite important in deeper lakes.

The diurnal cycle of convection in an ice-covered lake was considered by Petrov & Sutyrin
(1984). These authors used observational data and a mixed-layer model to analyze various
regimes of mixed layer deepening and considered the role of entrainment in determining the
rate of mixed layer growth. They also considered the Rayleigh number criterion for the onset
of convection and found that a very small negative temperature gradient is sufficient to induce
overturn in ice-covered lakes.

Detailed observations of convection under the ice were taken during consecutive field com-
panies in 1994, 1995 and 1999 in two small and shallow lakes, Lake Vendyurskoe and Lake
Rindozero in Karelia, north-western Russia (Bengtsson et al. , 1995; Bengtsson, 1996; Malm
et al. , 1996, 1997a,b; Terzhevik et al. , 2000). Highly resolved temperature and salinity pro-
files were acquired together with direct measurements of solar radiation flux at the ice-water
interface. During the spring 1999 (Terzhevik et al. , 2000) direct measurements of temperature
microstructure were acquired within the convective layer beneath the ice leading to estimates of
the turbulence kinetic energy dissipation rate. The temperature in the bottom layer at a number
of locations was observed to exceed the temperature of maximum density of fresh water. Con-
vective overturning was not detected, however, due to the stabilizing effect of salinity. Although
observed values of salinity in Karelian lakes were very low, the dynamical effect of salinity
stratification appeared to be significant as the water temperature was close to the temperature of
maximum density.

A number of numerical modeling studies of convection in ice-covered lakes have been per-
formed to date. Following Farmer (1975), several authors used mixed-layer models (e. g. Petrov
& Sutyrin 1984; Bengtsson 1996; Mironov & Terzhevik 2000). A level model based on the
heat transfer equation and a convective adjustment procedure was used by Matthews & Heaney
(1987). A two-dimensional non-hydrostatic model with a k-ε sub-grid scale closure was applied
by Pushistov & Ievlev (2000) to simulate the flow structures and the mixed-layer deepening. A
large-eddy simulation model was applied by Mironov et al. (2001) to simulate radiatively-driven
convection in ice-covered lakes.

The present study extends previous studies to consider the vertical temperature structure dur-
ing radiatively-driven spring convection in ice-covered lakes in framework of the mixed layer
approach. The mixed-layer scaling is developed that accounts for the vertically distributed char-
acter of the radiation heating. The scaling and similarity hypothesis for the convectively mixed
layer (Zilitinkevich & Deardorff, 1974) are used to derive an entrainment equation. The simila-
rity constants in this equation are not tuned to better fit data from measurements in a particular
lake during a particular convective episode. They are evaluated independently, by comparing
the entrainment laws predicted by the model with data from measurements, and by comparing
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the scaling relations for the TKE and its dissipation rate with data from measurements and from
large-eddy simulations. In this way we avoid “ tuning” , which may improve an agreement with a
limited amount of data and is sometimes justified, but should generally be avoided as it greatly
reduces the predictive capacity of a physical model (Randall & Wielicki, 1997). A mixed-layer
model that rests on the four-layer self-similar parameterization of the evolving temperature pro-
file and involves salinity effects near the maximum density temperature is applied to simulate the
mixed layer deepening in a number of temperate and polar lakes.

5.2 The Mixed Layer Model

5.2.1 The Heat Budget

The observed temperature profiles representative of the period of penetrative convection sug-
gest that four layers can be distinguished (Fig. 5.2). In a comparatively thin surface layer just
beneath the ice, the temperature increases from the freezing point at the ice-water interface to
the value characteristic of the bulk of the convectively mixed layer. Convective motions in the
mixed layer effectively homogenize its properties in the vertical. The temperature in the bulk
of this layer is nearly constant with depth. An entrainment layer at the bottom of the mixed
layer is characterized by a sharp temperature increase with respect to depth. The kinetic energy
of thermals is expended there for entraining denser fluid from below, into the mixed layer. A
stably stratified quiescent layer lies beneath the entrainment layer. Temperature changes in the
quiescent layer occur due to the absorption of solar radiation and molecular heat conduction. As
the solar heating proceeds, the depth and the temperature of the mixed layer increase. Remark-
ably, the evolving temperature profile preserves its four-layer structure. This permits the use of
a self-similar parametric representation of the temperature profile.

Motivated by the empirical evidence, we adopt the following parameterization of the temper-
ature profile during penetrative convection (Mironov & Terzhevik, 2000):

T =


Ts at 0 ≤ z ≤ δ

Tm at δ ≤ z < h

Tq at h < z ≤ D.

(5.1)

Here, z is depth; t is time; δ(t) is the depth of the surface layer beneath the ice; Ts(t, z) is
the surface layer temperature; h(t) is the depth to the lower boundary of the mixed layer whose
temperature is Tm(t); D is the depth to the bottom; and Tq(t, z) is the temperature in the quiescent
layer below the entrainment layer that is approximated by the zero-order temperature jump.

The Surface Layer

As the temperature, T , at the ice-water interface is fixed at the freezing point, Tf , there is always
a thin layer just below the ice where the temperature increases rapidly with depth (see Fig. 5.2).
Turbulence in this layer is mostly suppressed by the stable density stratification, and the heat
transfer equation (3.1) can be rewritten as:

∂T

∂t
= κ

∂2T

∂z2
− ∂I

∂z
, (5.2)

Assuming the heat transfer process in the surface layer be quasi-stationary, Eq. (5.2) can be
solved analytically. With ∂T/∂t = 0, the solution to Eq. (5.2) describing the temperature Ts(t, z)
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in the surface layer reads

Ts = Tf +
z

δ
(Tm − Tf ) + κ

−1

(∫ z

0

Idz′ − z

δ

∫ δ

0

Idz′
)

. (5.3)

Strictly speaking, the solution to Eq. (5.2) obtained with the molecular temperature conduc-
tivity κ cannot be extended down to the depth of the mixed layer top δ. The reason is that there is
a transition zone between the turbulent mixed layer and non-turbulent layer in the near vicinity of
the ice, where the temperature conductivity considerably exceeds its molecular value. However,
these peculiarities of the transition zone are ignored and the “molecular” solution is extended
down to the mixed layer to match its temperature Tm. Equation (5.3) requires that the depth
of the surface “conduction” layer be specified. The simplest way to determine δ is to use the
condition of smooth matching for the temperature profile at the bottom of the surface layer, i.e.
∂T/∂z = 0 at z = δ. This gives

κ(Tm − Tf ) + δI(δ) −
∫ δ

0

Idz = 0. (5.4)

The above parameterization of the surface layer was proposed by Barnes & Hobbie (1960).
In Figure 5.3, empirical data on the temperature profile in the surface layer are presented in

dimensionless form as

Θ =
Ts − Tf
Tm − Tf

versus ξ =

∫ z
0
Idz′ − zI(δ)∫ δ

0
Idz − δI(δ)

. (5.5)
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In these co-ordinates, the temperature profile given by Eqs. (5.3) and (5.4) is simply a diagonal of
the square of side one. The depth of the surface layer, δ, is determined from Eqs. (5.4) and (3.10)
with the estimates of Tm, I0, ai and γi taken from measurements. Most of the data presented in
Figure 5.3 were taken around noon to ensure a sufficiently high I0 that does not vary with time
too rapidly. As seen from Figure 5.3, empirical data tend to group around the diagonal Θ = ξ,
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Figure 5.3: Dimensionless temperature in the surface conduction layer, Θ = [Ts−Tf ]/[Tm−Tf ],

as function of dimensionless vertical co-ordinate, ξ =
[∫ z

0
Idz′ − zI(δ)

]
/
[∫ δ

0
Idz − δI(δ)

]
,

where δ is determined from Eqs. (5.4) and (3.10). Open circles show data from Lake Peters,
Alaska, taken on 16 May 1959 [Barnes and Hobbie, 1960], where a one-band approximation of
the decay law with γ = 0.3 m−1 is used, and I0 = 4 · 10−7 K·m·s−1. Filled circles and filled
squares show temperature-conductivity-depth profiles from measurements in Lake Vendyurskoe
for the periods 21 – 22 April 1995 [Malm et. al 1996, 1997a, 1997b] and 19 – 22 April 1999
[Terzheviket. al 2000]. For Lake Vendyurskoe, a two-band approximation Eq. (3.10) is used with
a1 = 0.5, a2 = 0.5, γ1 = 2.7 m−1 and γ2 = 0.7 m−1; radiation heat flux at the ice-water interface,
I0, varies from 7.0 · 10−6 K·m·s−1 to 1.5 · 10−5 K·m·s−1. Crosses are data from measurements
in Lake Rindozero [Malm et. al 1996, 1997a, 1997b], taken on 19 April 1995, where a1 = 0.5,
a2 = 0.5, γ1 = 7.1 m−1, γ2 = 1.5 m−1 and I0 = 7.0 · 10−6 K·m·s−1.

although the surface radiation flux, the attenuation coefficients and the depth of the surface layer
differ by more than an order of magnitude (e. g. δ is of order 0.2 m in Lake Vendyurskoe and is
greater than 2 m in Lake Peters). The scatter of empirical data is substantial, particularly near the
lower edge of the surface layer, Θ = ξ = 1, indicating the effect of the mixed-layer turbulence.
Notice also that the scatter of profiles taken during the 1999 field campaign is larger than the
scatter of other data points. This is not surprising, however, as the 1999 measurements were
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performed in late spring, when the mixed-layer temperature was already close to the temperature
of maximum density and the radiation heating was strong. In these conditions, the assumptions
behind Eqs. (5.3) and (5.4) become more questionable. Notwithstanding these uncertainties, the
overall performance of a simple solution given by Eqs. (5.3) and (5.4) is satisfactory.

Equations (5.3) and (5.4) yield the following expression:

Qwi ≡ −κ(∂Ts/∂z)z=0 = I(δ) − I0, (5.6)

that can be used to compute the kinematic heat flux from water to ice.

The Quiescent Layer

The temperature in the quiescent layer below the entrainment layer should be found from the
temperature transfer equation (5.2). To a good approximation, however, the effect of molecular
heat transfer can be neglected. The temperature profile in the quiescent layer is then given by

Tq = Tini +

∫ t

0

(−∂I/∂z) dt′, (5.7)

where Tini(z) is the initial temperature profile.

The Mixed Layer

In the mixed layer, the temperature transfer equation takes the form

∂T

∂t
= −∂Q

∂z
− ∂I

∂z
, (5.8)

where Q is the vertical turbulent temperature flux (i.e. the heat flux divided by +0 and cp). Since
the mixed layer temperature is taken to be independent of depth, the molecular heat transfer is
identically zero. Integrating Eq. (5.8) with due regard to Eq. (5.1) over the mixed layer, i.e. from
z = δ to z = h, and using boundary condition Q = 0 at z = δ, we obtain the following equation
of the temperature budget in the mixed layer (cf. Eq. 3.16):

(h− δ)
dTm
dt

= −Q(h) + I(δ) − I(h), (5.9)

where Q(h) = −∆Tdh/dt is the temperature flux due to entrainment at the base of the mixed
layer, and ∆T = Tq(h) − Tm is the zero-order temperature jump across the entrainment layer.

According to Eqs. (5.1), (5.8) and (5.9), the profile of the vertical turbulent temperature flux
in the mixed layer is given by (cf. Eq. 3.17)

Q(z) = I(δ)(1 − ς) + [I(h) + Q(h)] ς − I(z), (5.10)

The profile differs from that given by Eq. (3.17) in replacing z/h by dimensionless vertical co-
ordinate ς = (z− δ)/(h− δ) and by equating the turbulent flux to zero in the surface conduction
layer and in the quiescent layer below the entrainment zone.
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The mixed layer scaling Accounting bulk parameterization of temperature profile 5.1, the
convective velocity scale (3.32) takes the form:

wR = [−(h− δ)BR]1/3 ,

BR = β[T (δ)]I(δ) + β[T (h)]I(h) − 2(h− δ)−1

∫ h

δ

β(T )Idz. (5.11)

The minus sign in the expression for wR is introduced to ensure positive velocity scale, as at
temperatures below the temperature of maximum density β(T ) is negative.

The physical meaning of the above scaling can be elucidated by analogy with the Deardorff
(1970a,b) scaling. Consider a convective layer driven by the surface buoyancy flux. The quantity
w3

∗ ≡ hBs is a measure of the generation rate of the turbulence kinetic energy in a layer of
depth h by the buoyancy forces. This generation rate is the integral of the vertical buoyancy
flux, the buoyancy production term in the TKE budget equation, over the convective layer. For
the atmospheric convective boundary layer, for example, where the vertical buoyancy flux is
to a good approximation linear, that integral is 1

2
hBs. Similarly, the quantity −1

2
(h − δ)BR is

nothing but the TKE generation rate in a layer of depth h − δ due to the radiation heating. This
can be easily verified by integrating Eq. (5.10) over z from δ to h [and using a depth-constant
buoyancy parameter β = β(Tm)]. In doing so, it is reasonable to neglect the buoyancy flux
due to entrainment, B(h). Since the entrainment process requires that the TKE be spent, B(h)

is not a measure of the TKE generation rate. The velocity scale w′
R =

(
− ∫ h

δ
Bdz

)1/3

, B(z)

being the vertical turbulent buoyancy flux, that unlike wR includes the entrainment flux B(h),
was proposed by Farmer (1975) to estimate the velocity of convective motions in Lake Babine.
Notice that when the ratio of B(h) to BR is small (which was the case in Lake Babine) the values
of wR and 21/3w′

R are numerically close to each other. One more example of geophysical flows
where the energy considerations suggest the velocity scale very similar to wR is convection in
the atmospheric boundary layer capped by the stratocumulus clouds. A “generalized” convective
velocity scale that accounts for the effect of radiative cooling near the top of the stratocumulus-
capped convective boundary layer was introduced by (Deardorff, 1980) to scale data from three-
dimensional numerical simulations.

Notice that the velocity scale wR depends on the optical properties of water. A tempting
possibility to simplify the scaling, Eq. (5.11), and to use the velocity scale (−hβIs)

1/3 based on
the surface value of the radiation flux should be discarded by the following simple reasoning.
Clearly, if the water were perfectly transparent and did not absorb radiation, I(z) = I0, convec-
tion would not have occurred no matter how large the radiation flux. In the opposite limit of very
turbid water, where most of the radiation is absorbed in a thin layer just beneath the ice, the onset
of convection depends of the strength of the initial stratification. If the water column is initially
well-mixed and vertically homogeneous with respect to the temperature, convection will occur.
If however the initial temperature gradient is sufficiently strong, convection will not occur. The
absorption of most of the radiation just beneath the ice increases the temperature gradient there.
Most of the accumulated heat is then returned back to the ice due to the enhanced molecular heat
conduction, the temperature inversion is not developed, and the water column remains stably
stratified. As Eq. (5.11) suggests, a simplified scale Cs(−hβIs)

1/3, as used by (Kelley, 1997),
that does not account for the optical properties of water is a reasonable first approximation of wR
only in the limit where the depth to the bottom of the CBL, h, far exceeds both the depth of the
surface layer, δ, and the e-folding depth of the radiation flux, γ−1 in Eq. (3.10), and where the
difference between I(δ) and I0 is included in the dimensionless factor Cs.
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Verification of the proposed scaling is made on data from direct temperature fluctuation mea-
surements and from the LES of the radiatively-driven convection (Mironov et al. , 2002). Figure
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Figure 5.4: (a): Dimensionless TKE dissipation rate, ε(h− δ)/w3
R, versus dimensionless depth,

(z − δ)/(h − δ). Heavy dotted curve shows measurements in Lake Vendyurskoe (Jonas et. al,
proposed to J. Geophys. Res.). Thin curves show LES data for various simulations (Mironov
et al. , 2002). (b): Dimensionless turbulence kinetic energy, TKE/w2

R, versus dimensionless
depth, (z − δ)/(h− δ) on LES data (Mironov et. al 2001).

5.4a shows the TKE dissipation rate from LES study performed by Mironov et al. (2001) and
that estimated from microstructure measurements (Jonas et. al, proposed to J. Geophys. Res.)
using Batchelor (1959) method. Agreement between empirical and numerical data is fair. The
dimensionless profiles show a clear tendency to group together, while the dimensional values of
ε (not shown) differ by more than an order of magnitude between the simulations.Figure 5.4b
shows the dimensionless TKE obtained from LES. Although the dimensional TKE values (not
shown) differ significantly between the simulated cases, dimensionless TKE profiles group to-
gether nicely, thus supporting our mixed-layer scaling.

Some uncertainty in empirical data arises from diurnal changes of the radiation flux. Since
the TKE dissipation rate does not immediately follow changes in forcing, an adjustment time on
the order of a large-eddy turnover time is required, the TKE budget is not always in equilibrium.
Averaging over a large number of profiles may well be required for these uncertainties to cancel
out, whereas only eleven profiles are available to us.

5.2.2 The Entrainment Equation

For the horizontally homogeneous shear-free convective layer considered here, the TKE budget
equation (3.24) reads

d

dt

(∫ h

δ

edz

)
= −

∫ h

δ

βQdz −Fh −
∫ h

δ

εdz, (5.12)
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where Fh is the vertical flux of energy at the bottom of the mixed layer. To arrive at Eq. (5.12),
use has been made of boundary conditions e = 0 at z = δ and z = h (strictly speaking, the lower
boundary condition is established at the bottom of the entrainment zone, i.e. at z = h + 0), and
the energy flux at z = δ has been neglected.

We utilize the quadratic state equation (3.3), which is the simplest equation of state that
accounts for the fact that the temperature of maximum density of the fresh water exceeds its
freezing point Tf = 273 K. Unless the water temperature lies beneath T0 = 277 K, the buoyancy
parameter β is negative and the term

∫ h
δ
βQdz in (5.12) appears as the TKE source. For very

deep lakes the effects of water compressibility should be also incorporated (Farmer & Carmack,
1981).

In order to parameterize the vertical profiles of e and ε, we make use of the scaling consid-
ered in section 5.2.1 above. Following numerous previous researchers (a summary is given by
Zilitinkevich 1991), we employ the similarity hypothesis for the convectively mixed layer (Zil-
itinkevich & Deardorff, 1974). It states that the TKE and its dissipation rate, made dimensionless
with the appropriate length and velocity scales, i.e. with h−δ and wR, respectively, are universal
functions of dimensionless depth ς = (z − δ)/(h− δ),

e = w2
RΦe(ς), ε = (h− δ)−1w3

RΦε(ς), (5.13)

where Φe and Φε are dimensionless functions.
The energy flux at the bottom of the mixed layer, Fh, is due to internal gravity waves that

radiate energy into the stably stratified layer below. This flux is proportional to N3A2λ, where
N = (−β∂T/∂z)1/2 is the buoyancy frequency, and A and λ are the amplitude and length of the
waves, respectively (see e. g. Thorpe 1973). Kantha (1977) assumed that A is of the order of
the depth of the entrainment layer, while λ is of the order of the mixed-layer depth. Zilitinke-
vich (1987, 1991) took both A and λ to be proportional to the depth of the entrainment zone.
Fedorovich & Mironov (1995) tested these two parameterizations against data from laboratory
experiments. They found that the overall difference between the two parameterizations is rather
small, although the Zilitinkevich (1987, 1991) parameterization performs slightly better. We
adopt the following formulation:

Fh =
1

2
CwN

3
∆h3, (5.14)

where N is the buoyancy frequency averaged over the quiescent layer h < z ≤ D, ∆h = h− h0

is the thickness of the layer where the vertical turbulent temperature flux is negative, and Cw is
a dimensionless constant. The factor 1/2 on the right-hand side (r.h.s.) of the above expression
anticipates the form of the subsequent result. Since the buoyancy frequency varies with depth at
z > h, the layer-averaged N is taken as a characteristic value. The quantity ∆h = h − h0 is a
crude approximation of the thickness of the entrainment layer. The zero-crossing depth of the
vertical turbulent temperature flux, h0, is determined by setting the r.h.s. of Eq. (5.10) to zero,

I(δ)

(
1 − h0 − δ

h− δ

)
+ [I(h) + Q(h)]

h0 − δ

h− δ
− I(h0) = 0, (5.15)

and solving for h0.
Substitution of Eqs. (5.10), (5.13) and (5.14) into Eq. (5.12) and a little manipulation gives

the entrainment equation that can be written in the form

(Ce + Ri∆)Eh − CeEδ + CwRi3/2N

(
∆h

h− δ

)3

= Cε − 2

5
CeDe. (5.16)
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Here, Eh = w−1
R dh/dt is the dimensionless time-rate-of-change of the depth to the bottom of the

mixed layer, the entrainment rate; Eδ = w−1
R dδ/dt is the dimensionless time-rate-of-change of

the depth of the surface layer; wR is the convective velocity scale given by Eq. (5.11); Ri∆ =
−w−2

R (h − δ)∆b is the Richardson number based on the buoyancy jump across the entrainment

layer, ∆b = gaT
(
Tm + 1

2
∆T − Tr

)
∆T ; RiN = w−2

R (h−δ)2N
2

is the Richardson number based
on the buoyancy frequency in the quiescent layer below the mixed layer; and De = −w−4

R (h −
δ)2dBR/dt is the non-stationarity parameter (termed “ the Deardorff number” by Zilitinkevich
(1987), hence the notation De). Dimensionless constants Cε and Ce are defined as

Cε = 1 − 2

∫ 1

0

Φε(ς)dς, Ce =
10

3

∫ 1

0

Φe(ς)dς. (5.17)

These constants should be evaluated either directly, by computing the integrals on the r.h.s.
of Eq. (5.17) with Φε(ς) and Φe(ς) specified by the scaling relations (5.13), or indirectly, by
comparing the entrainment law predicted by the model with data from measurements in natural
and laboratory conditions. The estimates of Cε = 0.2 and Ce = 0.8 were recommended by
Zilitinkevich (1987, 1991). They were obtained by both methods using laboratory, atmospheric
and oceanic data from convective boundary layers driven by the surface buoyancy flux. These
values were successfully used by Mironov & Karlin (1989) to simulate day-time convection
in the upper ocean that is driven by the surface cooling but inhibited by the radiation heating.
The estimate of Cε = 0.2 is fairly accurate. This value is commonly accepted and used in
mixed-layer models of penetrative convection. It is consistent with the value of Cε = 0.18,
with standard deviation of 0.087, determined over the upper 50 m of Lake Babine by Farmer &
Carmack (1981), a calculation that included pressure effects. However, these authors also found
that Cε decreases rather rapidly at greater depths due to the pressure term. For Lake Babine,
the pressure term reduced the work done in redistributing heat entrained at the mixed layer base
relative to the work done in redistributing the same input absorbed by radiation near the surface,
by 7% at 71.5 m, 34% at 100 m and 57% at 150 m. The pressure term must therefore always be
included when scaling penetrative convection in lakes deeper than about 50 m.

The LES data presented in Figures 5.4 suggest slightly higher values of the dimensionless
constants, but these are not in conflict with “conventional” estimates. In many entrainment
regimes the mixed-layer growth is insensitive to the value of Ce, a result consistent with our
solutions in section 5.3. The constant Ce becomes important when the TKE budget is strongly
non-stationary, in which case an estimate based on the LES data would be inappropriate. An
indirect estimate of order 1 based on observed CBL growth into a neutrally stratified fluid (in
which case the entrainment equation reduces to Eh = Cε/Ce) is preferred. Published estimates
of the third constant of our model, Cw, are scarce. Using data from laboratory experiments, Fe-
dorovich & Mironov (1995) found Cw = 0.012 ≈ 0.01. We adopt this estimate.

5.2.3 Extension to the Case of Salt Water

When the lake temperature is in vicinity of the maximum density value, the dependence of its
density on temperature ∂+/∂T tends to zero and small salt concentrations existing in fresh-water
lakes can influence the stability of the water column drastically. The mixed layer model described
above is now generalized for the case of salt water where the salinity, S, affects the distribution
of buoyancy. The salinity distribution is modeled in much the same way as the temperature
distribution, i.e. through the use of a self-similar parametric representation of the profile of S.
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We adopt the following parameterization for the profile of salinity that is similar to Eq. (5.1)
for the temperature profile:

S =


Ss at 0 ≤ z ≤ δ
Sm at δ ≤ z < h
Sq at h < z ≤ D.

(5.18)

Here, Ss, Sm and Sq are the salinities in the surface layer just below the ice, in the mixed layer
and in the quiescent layer, respectively. The structure of the concentration field in the entrainment
layer is approximated by the zero-order jump, ∆S = Sq(h) − Sm.

Observations clearly indicate that salinity in the surface layer just beneath the ice significantly
decreases after the onset of penetrative convection (Malm et al. , 1997a). The decrease occurs
due to melting ice which releases water of lower salinity. The flux of salt due to melting ice can
be estimated from the heat balance equation at the ice water interface,

+cpQwi + LfM = 0, (5.19)

where Lf = 3.336 · 105 J·kg−1 is the latent heat of fusion, and M is the water mass flux, i.e. the
amount of water released due to ice melting per a unit area in a unit time. The kinematic heat
flux from water to ice, Qwi, is given by Eq. (5.6). The heat flux from ice to water is neglected,
although we note that if the ice is broken, the greatly increased ice-water surface area and near
surface mixing leads to substantial cooling and thickening of the surface layer, temporarily over-
coming the radiation induced instability and arresting convection for a few days (see Figure 6 in
Farmer 1975). It is reasonable to assume that the incident solar radiation causes ice melting from
above. The temperature at both the lower and upper ice boundaries is thus fixed at the freezing
point Tf . We also assume that the temperature within the ice is not too different from Tf and
varies only slightly with depth. Then, the heat flux through the ice that is proportional to the
vertical temperature gradient is small and can safely be neglected, leading to the heat balance
equation (5.19). The flux of salt at the underside of the ice, Fs, is given by

Fs = +−1M [Si − Ss(0)] , (5.20)

where Si and Ss(0) are the salinities in the ice and in the water just beneath the ice, respectively.
The simplest model for the vertical salinity profile in the surface layer may be developed by

assuming that (i) the turbulent flux of salt is zero throughout the surface layer (cf. the reasoning
behind Eq. (5.3) for the temperature profile in the surface layer), and (ii) the molecular flux of
salt decreases linearly from Fs at the ice-water interface to zero at the bottom of the surface layer,
−µ∂S/∂z = Fs(1 − z/δ), where µ = 5.0 · 10−10 m2·s−1 is the molecular diffusivity of salt in
water (a value for main ions typical of lake waters, see Rodhe 1949 and Li & Gregory 1974).
Then, the concentration profile that matches the mixed-layer concentration Sm is

Ss = Sm +
Fsδ

2µ
(1 − z/δ)2 , (5.21)

Notice that Eq. (5.21) ensures smooth matching of the mixed-layer concentration profile, i.e.
∂S/∂z = 0 at z = δ. The salinity in the water just beneath the ice is

Ss(0) =
Sm + (Mδ/2+µ)Si

1 + (Mδ/2+µ)
. (5.22)

Strictly speaking, the salinity profile in the surface layer should be found as a solution to the
diffusion equation, ∂S/∂t = µ∂2S/∂z2, subject to boundary conditions, S = Sm at z = δ
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and −µ∂S/∂z = Fs at z = 0. However, a simpler problem may be considered instead if an
approximate character of our model is taken into account. The salinity profile can be found as
a solution to the stationary diffusion equation, µ∂2S/∂z2 − Fs/δ = 0, where the effect of ice
melting is represented as a depth-constant source term −Fs/δ, subject to boundary conditions
S = Sm at z = δ and S = Ss(0) at z = 0. The surface concentration Ss(0) is then determined
from the requirement of smooth matching of the mixed-layer concentration profile, ∂S/∂z = 0
at z = δ. It is easy to verify that the result is given by Eqs. (5.21) and (5.22).

The salinity of the mixed-layer should satisfy the transport equation in the form

∂S

∂t
= −∂F

∂z
, (5.23)

where F is the vertical turbulent flux of S. Integrating Eq. (5.23) with due regard to Eq. (5.18)
from z = δ to z = h, and using boundary condition F = 0 at z = δ, we obtain the following
equation of the salinity budget in the mixed layer:

(h− δ)
dSm
dt

= −F (h), (5.24)

where F (h) = −∆Sdh/dt is the flux of S due to entrainment at the bottom of the mixed layer.
The salinity in the quiescent layer below the entrainment layer should be found from the

solution to the diffusion equation. Salinity changes in the quiescent layer occur due to molecular
diffusion only and are very slow. As a first approximation they may be neglected, and the salinity
profile at z > h may be kept fixed over the entire convection period,

Sq = Sini, (5.25)

where Sini(z) is the initial salinity profile.
The description of the salinity distribution is thus complete. Given an initial profile, evolution

of the profile during the convective period can be found. However, as the salinity affects the
buoyancy distribution, the following alterations should be made to the model equations.

The equation of state (3.3) should be amended to incorporate the salinity contribution to
density. The simplest equation of state that accounts for this effect is

+ = +0

[
1 − 1

2
aT (T − Tr)

2 + aS (S − Sr)

]
, (5.26)

where Sr is the reference salinity and aS = 7.93 · 10−4 ppt−1 is an empirical coefficient op-
timized for temperature and salinity ranges of 273 K<T<278 K and 0<S<1. The buoyancy
frequency (whose value averaged over the quiescent layer appears in the entrainment equation
(5.16) through the Richardson number RiN ) should include the effect of the salinity gradient,
N = [−gaT (T − Tr) ∂T/∂z + gaS∂S/∂z]1/2.

Equation (5.15) for the zero-crossing depth of the vertical turbulent buoyancy flux should be
replaced with

gaT (Tm − Tr)

[
I(δ)

(
1 − h0 − δ

h− δ

)
+ I(h)

h0 − δ

h− δ
− I(h0)

]
−(

∆b
dh

dt

)
h0 − δ

h− δ
= 0, (5.27)

where ∆b = gaT
(
Tm + 1

2
∆T − Tr

)
∆T − gaS∆S is the buoyancy jump across the entrainment

layer. The buoyancy jump ∆b also appears in Eq. (5.16) through the Richardson number Ri∆.
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5.3 The Mixed Layer Deepening

Turning now to the discussion of the deepening of a convectively mixed layer, we use a mixed-
layer model to simulate several convective episodes observed in lakes in the absence of salinity
effects.

Several convective episodes have been simulated. These are the episodes described by Malm
et al. (1996, 1997a, 1997b) for Lake Vendyurskoe, Russia, 21 – 23 April 1995, by Barnes &
Hobbie (1960) for Lake Peters, USA, 16 May – 19 June 1959, by Schindler et al. (1974) for
Lake Char, Canada, 1 – 15 June 1971, by Farmer (1975) for Lake Babine, Canada, 30 March –
30 April 1973 , and by Malm et al.(1996, 1997a, 1997b) for Lake Rindozero, Russia, 21 – 25
April 1995. We use the one-band and two-band approximations of the exponential decay law for
solar radiation flux (Eq. 3.10).

We first focus on the most fully documented case of Lake Vendyurskoe. Using the estimate
of I0 derived from direct radiation measurements under the ice, together with the two-band ap-
proximation of the decay law with a1 = 0.5, a2 = 0.5, γ1 = 2.7 m−1 and γ2 = 0.7 m−1 (Malm
et al. , 1996, 1997a), we compute the evolving temperature profile for the period 21 – 23 April
1995. As seen from Figures 5.5 and 5.6, although the model slightly underestimates mixed-layer
depth and overestimates mixed-layer temperature towards the end of the period, predictions are
in fair agreement with observations at station CS4-3 (station locations are shown in Figure 2 of
Malm et al. 1997a). We emphasize that the constants Cε, Ce and Cw in the entrainment equa-
tion, and the coefficients a1, a2, γ1 and γ2 in the radiation decay law, are estimated independently
and not adjusted to improve the fit. We emphasize the close qualitative agreement between our
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Figure 5.5: Successive temperature profiles in
Lake Vendyurskoe, Karelia, Russia, 21 – 23
April 1995 (Malm et. al 1996, 1997a, 1997b).
Solid curves: mixed-layer model. Curves with
symbols: measured profiles. A two-band radia-
tion decay law is used with a1 = 0.5, a2 = 0.5,
γ1 = 2.7 m−1 and γ2 = 0.7 m−1 and a constant
value of I0 = 7 · 10−6 K·m·s−1.

four-layer self-similar representation and the observed vertical temperature profile. Apart from a
single profile on 24 April for which the upper part of the CBL exhibits an anomalous warming,
the mixed layer is indeed well mixed. The temperature in the deeper quiescent layer slowly in-
creases with time due to radiant heating beneath the mixed layer. Computed and measured values
of the surface layer thickness, δ, are also in close accord. Although our surface layer model is
simplified, it describes its depth and temperature quite accurately (see also the discussion in sec-
tion 5.2.1). We note however, that a more sophisticated surface layer model would be required
to describe effects of rapid variations in radiation flux.

Various terms in the entrainment equation (5.16) are shown in Figure 5.7 as functions of time.
The leading-order terms are Cε and Ri∆Eh. The balance of these two terms,
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Figure 5.6: Model calculations of mixed depth,
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layer depth, δ, in Lake Vendyurskoe 21 – 23
April 1995. Symbols are data from measure-
ments of Malm et al. (1996, 1997a, 1997b).
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Figure 5.7: Terms in the entrainment equa-
tion (5.16) versus time for Lake Vendyurskoe
21 – 23 April 1995. Heavy solid curves
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Ri∆
dh

dt
= CεwR

represents the zero-jump approximation of the entrainment equation (3.35) derived in section
3.2.

Although considerably smaller, the term CwRi3/2N [∆h/(h − δ)]3 is not negligible. The other
terms are at least one and a half orders of magnitude smaller. This illustrates the similarity
between convection beneath ice and conditions typical in the atmospheric convective boundary
layer. To a first approximation, both environments are described by a simple relation Ri∆Eh =
Cε, i.e. by a constant entrainment coefficient A = Cε. The entrainment coefficient, which is a
measure of entrainment efficiency, is usually defined as a negative of the ratio of the buoyancy
flux due to entrainment, B(h), to the surface buoyancy flux, Bs. For convection driven by radia-
tion heating, it is natural to define the entrainment coefficient as A = −B(h)/BR, which is just
Ri∆Eh. The regime of convection where Ri∆Eh = Cε is very accurately reproduced in two-layer
laboratory experiments (see summary in Zilitinkevich 1991). Loss of energy through internal
gravity wave radiation, described by the term CwRi3/2N [∆h/(h − δ)]3, reduces the entrainment
rate. Considering the “universal” character of the entrainment equation (5.16), i.e. the fact that it
remains the same within the velocity and length scale definitions, shows that correct mixed-layer
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scaling is vital for modeling both of these convection regimes. Good agreement between model
predictions and observations supports our choice of convective scales (5.11).

Notice that the terms CeEδ and 2
5
CeDe in Eq. (5.16) that are negligible in our computation

may be large for a rapidly varying radiation flux (e. g. if the diurnal variations of I0 are consid-
ered). The term CeEh, also negligible in our case, is the leading-order term (along with Cε) in the
convection regime where a mixed layer grows into a neutrally stratified quiescent layer. Then,
the entrainment equation reduces to a simple relation Eh = Cε/Ce. Petrov & Sutyrin (1984)
showed that this regime of entrainment is encountered in ice-covered lakes during morning. It
starts just after sunrise and lasts until the bottom of the mixed layer reaches the stably stratified
interfacial zone formed by the end of the previous day. The term CeEh is not negligible at small
times if ∆T = 0 is taken as the initial condition (in our computation, ∆T = 0.02 K at t = 0).
This term remains important until the influence of initial conditions is negligible.

One more limiting regime of the mixed-layer deepening is the so-called encroachment, the
regime with zero entrainment buoyancy flux. This regime was first analyzed by Zubov (1943).
A model of radiatively-driven convection in an ice-covered lake based on the entrainment equa-
tion with B(h) = 0 was considered by Bengtsson (1996). As pointed out by Farmer (1975),
whose entrainment equation accounts for encroachment as one of the limiting cases, a model
with B(h) = 0 underestimates the rate of the mixed layer growth.

Figures 5.8, 5.9, 5.10 and 5.11 compare the modeled and measured vertical temperature
profiles during convective episodes observed in Lake Peters 16 May – 19 June 1959 (Barnes
& Hobbie, 1960), in Lake Char 1 – 15 June 1971 (Schindler et al. , 1974), in Lake Babine 30
March – 30 April 1973 (Farmer, 1975), and in Lake Rindozero 21 – 25 April 1995 (Malm et. al
1996, 1997a, 1997b), respectively. The empirical information available from the above four
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Figure 5.8: Successive profiles in Lake Pe-
ters, Alaska, 16 May – 19 June 1959 (Barnes
and Hobbie 1960). Solid curves: mixed-layer
model. Symbols: measured profiles. A one-
band radiation decay law is used with γ = 0.3
m−1. The surface radiation flux, I0, increases
linearly from 4 · 10−7 K·m·s−1 to 8 · 10−6

K·m·s−1 over the period of simulation.

lakes is not as detailed and accurate as from Lake Vendyurskoe, and some caution is required
when interpreting the results. For Lake Peters and Lake Char, the temperature profiles are taken
from temperature-depth plots; for Lake Rindozero, thermistor chains measurements are used.
For Lake Babine, two temperature records obtained with an electronic bathythermograph are
shown together with thermistor chain measurements [each chain has eleven thermistors with 2
m spacing on the upper instrument, 5 m spacing on the lower chain (Farmer, 1975)]. Highly
resolved radiation measurements are unavailable for Lake Peters, Lake Char and Lake Babine,
and we have used the one-band decay law approximation. The surface radiation flux, I0, is
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in Lake Char, Canada, 1 – 15 June 1971
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one-band radiation decay law is used with γ =
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Figure 5.11: Successive temperature profiles in
Lake Rindozero, Karelia, Russia, 21 – 25 April
1995 [Malm et. al 1996, 1997a, 1997b]. Solid
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either approximated by a linearly increasing function of time, or kept constant over the period of
simulation, although time dependent radiation flux time series can be resolved by integration of
the mixed layer heat content as a function of time (Farmer, 1975).

Despite uncertainties in the input parameters and temperature records, the model shows sat-
isfactory consistency with the observations. Particularly good agreement is found between the
model prediction and observed temperature profile 15 April 1973 in Lake Babine. The CBL
depth and water transparency differ greatly between the five lakes considered here. In the three
polar lakes, Lakes Peters, Char and Babine, the convective layer is a few tens of meters deep, but
is less than 10 m deep in Lakes Vendyurskoe and Rindozero. Attenuation coefficients for solar
radiation also differ by more than an order of magnitude. Given the independent estimation of
model constants, consistent predictions over the wide range of limnological conditions reinforces
our confidence in our simplified model.

5.4 The Effect of Salinity

As discussed above, in many lakes the effect of salinity stratification cannot be neglected, al-
though the absolute values of salinity are small. When the temperature in the bottom layer
exceeds the temperature of maximum density, convective mixing would have occurred were
it not for the increase of salinity that maintains static stability. Convective episodes in Lake
Vendyurskoe are compared with corresponding model predictions.

The salt concentrations referred to here are derived from measurements of conductivity, tem-
perature and pressure, and converted into “salinity” using the standard oceanographic conver-
sion algorithms. Lacking full chemical analysis of the dissolved salts, we recognize that small
unknown discrepancies will exist between the density contribution of dissolved solids in any
particular lake and that due to salinity derived from the oceanographic algorithms; however, we
anticipate these discrepancies are minor. For consistency with the inversion algorithm, values of
salinity are given using the standard oceanographic convention of “practical salinity units” .

Figure 5.12 shows the temperature (a) and salinity profiles (b) during a convective episode in
Lake Vendyurskoe, Karelia, Russia, 20 April to 2 May 1994 (Bengtsson et al. , 1995; Bengtsson,
1996).

The profiles were acquired at station CS4-6 in the central part of the lake (see Figure 6 of
Bengtsson 1996). The temperature near the lake bottom in Figure 5.12(a) exceeds the fresh wa-
ter temperature of maximum density. However, the salinity profile ensures that static stability
is maintained. Absolute values of S are much less than 1 ppt, as indicated in Figure 5.12(b).
Nonetheless, a weak salinity stratification appears to be sufficient to prevent convective over-
turning of the near-bottom layer, the temperature of which is close to that of maximum density.
At this temperature the thermal expansion coefficient tends to zero and thermally induced density
changes are small. However, the rate of mixed-layer deepening is virtually unaffected by salinity
stratification. Results from a test computation (not shown), performed with a lower boundary
artificially set at z = 9 m where the temperature is less than Tr, and with the salinity set to zero
throughout, differed little from the results shown in Figure 5.12 (the mixed-layer depth was only
0.1 m deeper with no salinity at the end of the simulation and the difference in mixed-layer tem-
perature was negligibly small). This is because the bottom of the mixed layer has not reached
the layer of significant gradient of salinity, and the mixed-layer temperature is still well below
the temperature of maximum density at the end of the period considered. Although the salinity
gradient enters the entrainment equation through the buoyancy frequency in the quiescent layer,
its effect on the entrainment rate is small. Changes in N due to the salinity gradient produce a
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Figure 5.12: Successive vertical profiles of (a) temperature and (b) salinity in Lake Vendyurskoe,
Karelia, Russia, 20 April – 2 May, 1994 (Bengtsson et. al 1995, 1996). Solid curves: model.
Curves with symbols: measured temperature profiles on 20, 24, 28 April and 2 May 1994. Salin-
ity profile was recorded 20 April 1994. A two-band radiation decay law is used with a1 = 0.5,
a2 = 0.5, γ1 = 2.7 m−1 and γ2 = 0.7 m−1, and a constant value of I0 = 8 · 10−6 K·m·s−1.

correction to the wave term, the last term on the left-hand side of Eq. (5.16), but the effect is
minor relative to the entrainment terms (see section 5.3). The salinity also affects the buoyancy
jump across the entrainment layer. Its contribution is small relative to that of the temperature
jump.

Measurements at two stations CS4-9 (depth ∼12 m.) and CS4-9 (depth 7.5 m.) were used in
model simulations of convective episode in Lake Vendyurskoe over the period 16 – 24 April 1999
(Terzhevik et al. , 2000; Kirillin et al. , 2001). The situation is different from the previous one.
The simulated temperature profiles shown in Figures 5.13a and 5.14a display a curious feature.
A negative temperature jump across the interfacial layer develops by the end of the simulation
period. This is possible due to the stabilizing effect of salinity stratification. By late spring 1999
the CBL has reached a depth where there is a substantial salinity gradient that tends to slow the
penetration. Further heating of the mixed layer results in a negative temperature jump below the
mixed layer, clearly remarkable in Fig. 5.14. However, the salinity stratification (figures 5.13b
and 5.14b) is sufficient to stabilize the profile even in the presence of the temperature structure,
so that the buoyancy jump across the interfacial layer remains negative, see Figures 5.13c and
5.14c.

At the station CS4-9 (5.13), the temperature near the lake bottom exceeds Tr. The water
column remains statically stable, however, due to the stabilising effect of salt concentration.
Notice that the absolute values of S are very small, two orders of magnitude less than a typical
oceanic value. Nonetheless, a weak salinity stratification appears to be sufficient to prevent
convective overturning of the near-bottom layer whose temperature is close to Tr. As seen in
Fig. 5.13, the simulated profiles of temperature, salinity and buoyancy are in fair agreement
with observations. Figure 5.15 shows salinity profiles just beneath the ice. Computed values
of salinity just beneath the ice agree well with values observed at both stations. The profiles of
salinity in the conduction layer at the station CS4-6 (right plot in Fig. 5.15) are also reproduced
fairly good by the model. Salinity profiles at the station CS4-9 vary considerably (left plot in
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Figure 5.13: Successive vertical profiles of (a) temper-
ature, (b) salinity, (c) buoyancy, in Lake Vendyurskoe,
Karelia, Russia, 16 – 24 April 1999 (Terzhevik et. al
2000). Solid curves: mixed-layer model. Curves with
symbols show profiles measured at the station CS4-9
where depth to the bottom is 11.5 m. A two-band radiation
decay law is used with a1 = 0.5, a2 = 0.5, γ1 = 2.7 m−1

and γ2 = 0.7 m−1, and a constant value of I0 = 1.3 · 10−6
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Figure 5.15: Salinity profiles on expanded scale 16 – 24 April 1999 (Terzhevik et. al 2000) just
beneath the ice. Left panel: station CS4-9, (Fig. 5.13); right panel: station CS4-6, (Fig. 5.14).

Fig. 5.15). These variations are produced probably by horizontal motions and are not predicted
by the model. The CBL temperature structure prediction in Figs. 5.13a and 5.14a degrades
somewhat towards the end of the simulation period. The last profile is qualitatively different,
displaying a blob of warm water above the mixed layer. This feature cannot be explained by our
four-layer parameterization, but is hardly surprising. Convection energetics near the temperature
of maximum density are more complicated and the bulk scaling, Eq. (5.11), underlying our
mixed-layer model is not applicable. Clearly, as Tm tends to Tr, the velocity scale, wR, given by
Eq. (5.11) tends to zero. The third-order temperature-velocity correlation should be included in
the expression for vertical buoyancy flux in order to arrive at a non-zero convective velocity scale
(see Mironov et al. 2001 for further discussion). Our mixed-layer model is inapplicable where
the bulk of the water column exceeds the temperature of maximum density (cf. the observations
of Woodcock 1965 discussed in section 5.1). In this situation solar heating establishes a stable
density stratification; static instability only occurs where the temperature increases with depth
from Tr to its maximum value. In Figure 5.13(a), it is the upper part of the layer with temperature
in excess of Tr that is unstably stratified. We therefore halt our computations when the mixed-
layer temperature reaches the temperature of maximum density.



Chapter 6

Conclusions

6.1 General results

• Self-similarity analysis of the temperature profile in the thermocline.

The concept of self-similarity of the thermocline is discussed. The physical background
of the self-similarity hypothesis is analyzed. It is shown that the self-similarity of the
temperature profile can be explained as being equivalent of the traveling wave type solution
of the heat transfer equation in one-dimensional form.

The solution is achieved accounting the stratification below the thermocline that extends
the applicability of the self-similarity thermocline’s representation on wide range of geo-
physical flows including shallow lakes, atmospheric CBL and the seasonal thermocline in
the ocean. Accounting of the underlying stratification in non-turbulent fluid by means of
the dimensionless temperature gradient at the thermocline’s base, Γ allows the temperature
profile within the thermocline to vary in shape collapsing asymptotically into a temperature
jump at the UML base as the underlying gradient infinitely grows.

The solution generalizes previously proposed empirical descriptions of the temperature
profile in the thermocline. The turbulent heat flux profile resulting from the solution in-
dicates the direct ratio between mixing intensity and the potential energy, that is in ac-
cordance with the theory of mixing in stratified fluids driven by internal waves breaking
(Kantha, 1977; Zilitinkevich et al. , 1988).

The solution is tested against observations in the Ocean, the Earth and Mars atmospheres,
laboratory modeling and measurements in lakes. The vertical extensions of the natural
processes vary from several meters to tenth of kilometers but, when scaled using proposed
dimensionless variables, all temperature profiles tend to group at the curve given by pro-
posed solution.

The self-similar description of the temperature profile make it possible to extend bulk
modeling approach analogous to mixed-layer modeling on the stratified part of water col-
umn. The fact that the temperature flux at the thermocline’s base is taken into account,
allows incorporating the description in models of shallow lakes, where the heat flux at
the water-sediments boundary can be significant, and in models of convection capped by
strong inversion in the atmospheric CBL.

• Model of lake temperature evolution.
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The model of seasonal temperature evolution in lakes is developed using the source code
and general concepts of the TeMix model (Mironov et al. , 1991). The model makes
use of two-layered representation of temperature profile based on achieved self-similarity
solution.

In contrast to the previous TeMix algorithm, differential heating of water layer by pene-
trating solar radiation is taken into account that sufficiently improves the model predictions
especially in the shallow lake conditions.

The model performance is investigated on data from the Lake Müggelsee. The comparison
of the modeling results with observations shows that the model adequately predicts vertical
temperature structure in shallow lakes. The model calculations for summer periods of
1980-1996 have allowed distinguishing the overestimation of the solar radiation data in
measurements performed over the lake in 1980-1989. It demonstrates the sensitivity of the
model to the input data quality and testifies to the reliability of the model predictions.

Comparison of the modeling results with two-equation turbulence models is performed.
Predictions of the mixed layer depth as they given by the current model are in the good
agreement with the vertical turbulence structure predicted by the k-ε model. At the same
time, the bulk algorithm underlying the TeMix model provides better results in modeling
the surface temperature in shallow lakes than that of k-ε and Mellor-Yamada models. The
latter two models show essential numerical instability when applied to shallow water bod-
ies under conditions of strongly varying surface heat flux. This fact and the high compu-
tational requirements make difficult any utilization of the two-equation turbulence models
in ecological and meteorological applications, where prediction of the thermal structure
in shallow lakes is necessary. The TeMix model in its turn is free from these limitations
combining adequate predictions with low computer costs.

The model predicts fairly good the seasonal and interannual variability of the thermal
regime in a polymictic lake including stratification formation and destroying. The output
characteristics of the model: the mean temperature, the depth and the temperature of the
upper mixed layer, provide with information sufficient for various applications related to
the lake physics.

The role of water transparency temporal variability in heat budget of a shallow lake is
investigated using modeling results and observational data from the Lake Müggelsee. It
is found, that for summer periods with low values of the average wind speeds, the surface
temperature variations are correlated with the light extinction in lake water. It supposes a
backward effect of the plankton growth on the lake temperature.

• Convection in ice-covered lakes.

The entrainment regimes typical of convection under the ice are analyzed. It is shown that
the entrainment equation suitable for the surface-flux-driven convection in the atmosphere
and the ocean also applies to convection beneath lake ice, provided that the Deardorff con-
vective velocity scale based on the surface buoyancy flux, is replaced with the appropriate
scale that accounts for the vertically distributed character of radiation heating.

A bulk mixed-layer model is applied to simulate the deepening of convectively mixed
layer. The model utilizes a self-similar zero-order-jump representation of the evolving
temperature profile. A stationary solution to the heat transfer equation is used to describe
the structure of the stably stratified layer just beneath the ice. The mixed-layer scaling and
the TKE budget equation integrated over the mixed layer are used to derive the entrainment
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equation. The model predictions compare well with data from observations in a number of
temperate and polar lakes.

An extension of the mixed-layer model for the case of salt water is proposed and tested
against observations. Although the salinity is very low in most temperate and polar lakes,
its dynamical effect can be significant close to the temperature of maximum density. In
particular, when the temperature increases with depth and exceeds the temperature of max-
imum density in the bottom layer, the water column would have undergone convective
overturning were it not for the salinity increase with depth that maintains static stability.

A regime of convection similar to that in ice-covered fresh-water lakes may be encountered
in puddles over melting sea ice. Since the puddle water is nearly fresh and has a tempera-
ture below that of maximum density, solar heating would drive convective motions just as
it does in ice-covered lakes. The difference between the two regimes lies in the boundary
conditions. The temperature of the puddle surface changes with time, while in a lake the
temperature at the ice-water interface is fixed at the freezing point. Conversely, the lake
bottom temperature changes with time, while in the puddle it is fixed at the freezing point.
Knowledge of convection in puddles is of practical importance, since convective motions
intensify the vertical heat transport towards the ice, thus influencing the rate of ice melting.

Finally, radiatively-driven convection in ice-covered lakes represents a nearly ideal test
case for turbulence models. As pointed out by (Farmer, 1975), it is a rare example of
geophysical convective flows where there is no mean shear, providing an important sim-
plification of particular value in the study of gravitational instability and its consequences.
Data sets generated through temperature and turbulence measurements in the CBL be-
neath lake ice and through LES can be used to test and further develop turbulence models
of convective flows.

6.2 Practical applications

Integration of the model developed here into the model of shallow lake ecosystems (Schel-
lenberger et al. , 1983) will be a logical extension of the present study. One can expect
essential improvement of the ecological components prediction when the vertical tem-
perature stratification is taken into account (Ford & Thornton, 1979; Denman & Gargett,
1983). The mixed layer depth is the length scale determining the vertical distribution of
lake plankton as well as overall biomass production. The stratification regime determines
also the internal and external nutrients loading and, consequently, the trophic state of a
lake (Golosov & Kirillin, 2000).

Integration of the current algorithm with improved parameterizations of ice-water and
water-sediments exchange, which have being currently developed on the base of the TeMix
code (Zverev, 2000) is envisaged in the near future and will result in a comprehensive
model of the “ ice – water column – sediments” system. Its development is targeted in
the project “Representation of lakes in numerical models for environmental applications”
undertaken currently by joined scientific team of meteorological and limnological institu-
tions.

The parameterized description of the vertical temperature distribution developed here can
be also used in two- and three-dimensional models of water dynamics, where simplified
but physically sound parameterization of the vertical transport is desirable. This approach
was used e. g. by Kirillin et al. (1998) for modeling of coastal currents in large lakes.
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The interaction of the atmosphere with the underlying surface is strongly dependent on
the surface temperature and its time-rate-of-change. It is common for NWP systems to
assume that the water surface temperature can be kept constant over the forecast period.
The assumption is to some extent justified for seas and deep lakes. It is doubtful for
small-to-medium size relatively shallow lakes, where the diurnal variations of the surface
temperature reach several degrees. A large number of such lakes will become resolved-
scale features as the horizontal resolution is increased. The use of a horizontal grid-size
of about three kilometers will soon become a common practice in short-range weather
forecast. In climate modeling systems with coarser resolution, many small-to-medium
size lakes remain sub-grid scale features. However, the presence of these lakes cannot
be ignored due to their aggregate effect on the grid-scale surface fluxes. This effect is
still poorly understood and parameterized. A renewed interest to the problem of lakes has
led to the development of several parameterizations for use in NWP and CM systems (e.
g. Ljungemyr et al. 1996, Goyette et al. 2000, Tsuang et al. 2001). Some assume a
complete mixing down to the lake bottom and characterize the entire water column by a
single value of temperature. Although this assumption results in a bulk model that is very
cheap computationally, it is an oversimplification from the physical point of view since
most lakes are stratified over a considerable part of the year. Turbulence closure models,
e.g. models based on the transport equation for the turbulence kinetic energy (Tsuang et al.
, 2001), would do the work of describing the lake thermocline better. However, closure
models are expensive computationally. Thus, a lake model for environmental applications
is required that is physically sound, but at the same time computationally efficient. A very
good compromise between physical realism and computational economy can be achieved
with the current parameterized model, where the structure of the stratified layer between
the upper mixed layer and the basin bottom is described using the concept of self-similarity
of the temperature profile in the thermocline.
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Acronyms

CBL Convective Boundary Layer

CM Climate Modeling

CTD Conductivity-Temperature-Depth

DNS Direct Numerical Simulation

HTE Heat Transfer Equation

IGB Institut für Gewässerökologie und Binnenfischerei
(Institute for Water Ecology and Inland Fisheries)

IL Interfacial Layer

LES Large Eddy Simulation

MGS Mars Global Surveyor experiment

MO Monin-Obukhov (scaling)

NWP Numerical Weather Prediction

TKE Turbulent Kinetic Energy

UML Upper Mixed Layer
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List of symbols

Some intermediate notations are not included in the list and explained as they appear in text.

Sub- and Superscripts
�̇ Derivative with regard to t,

�′ Derivative with regard to ζ,

�̄ Vertical co-ordinate averaging,

〈�〉 Reynolds averaging,

�̃ Turbulent pulsation,

�D Bottom value,

�S Surface value,

�h Value at the UML base,

∆� Difference across the thermocline (�D − �h),

Greek

αT Thermal expansion coefficient,

αS Saline contraction coefficient,

β Buoyancy parameter,

γ Light extinction coefficient,

Γ Dimensionless temperature (density) gradient,

δ Upper “conduction” layer thickness (Chapter 5),

ε Turbulent dissipation rate,

ζ Dimensionless vertical co-ordinate,

ϑ Dimensionless temperature,

κ Molecular temperature diffusion coefficient,

µ Molecular diffusivity of salt in water,

ξ Dimensionless vertical co-ordinate in conduction layer,
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� Water density,

ς Dimensionless vertical co-ordinate in ML,

χ Dimensionless temperature conductivity coefficient,

Φ Dimensionless vertical heat flux,

ϕ Latitude,

Latin

A Lake surface albedo,

b Buoyancy,

B Vertical buoyancy flux,

C� Dimensionless constants,

D Lake depth, m

g Gravity acceleration,

h UML depth, m

I solar radiation,

K Turbulent heat (temperature) conductivity,

KXY Coefficient of cross-correlation between quantities X and Y,

l Turbulent mixing length scale,

L∗ Monin-Obukhov length scale,

N Brunt-Väisälä frequency,

Q Vertical heat (temperature) flux,

S Salinity,

T Temperature, K(◦C)

t Time co-ordinate,

u∗ Surface friction velocity,

w∗ Deardorff convective velocity scale,

wR Radiatively-driven convective velocity scale,

w∗R w∗ + wR,

z Vertical co-ordinate,
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