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1. THE CONCEPT OF PYCNOCLINE SELF-SIMILARITY 
 
The pycnocline - a layer of strong density gradient adjoining the quasi-homogeneous 
boundary layer - proves to have a similar form in natural water bodies of different depth and 
of different overall vertical density difference. A counterpart of the pycnocline can be also 
found in the atmosphere when convective mixing in the near-surface layer is capped by 
temperature inversion above. The interface developing in this case at the top of the mixed 
layer shows a structure similar to the pycnocline below the upper mixed layer in oceans and 
lakes. A self-similar structure of the density interface is clearly distinguishable in laboratory 
experiments on entrainment in stratified fluids (Linden 1975, Wyatt 1978). The empirical 
evidence of the pycnocline self-similarity encouraged a number of researchers to use the 
pycnocline depth ∆h and the density jump across it ∆ρ as universal length and temperature 
scales in modelling of vertical density structure of the ocean and the atmosphere. The first 
ones were apparently Kitaigorodski and Miropolski (1970), who applied the idea of self-
similarity to description of the oceanic active layer. Using the above-mentioned scales, the 
authors introduced dimensionless coordinates  
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Here, Tm is the temperature of the upper mixed layer of depth h(t) and ∆T = Tb-Tm, is the 
temperature difference across a thermocline of depth ∆h(t). An approximated expression for 
the function Θ(ζ) was then found from boundary conditions at the upper and lower 
thermocline’s borders in form of a 4th degree polynomial using Polhausen approach (see 
fig.1). The idea was subsequently developed using the same solution scheme by other authors 
(see reviews in Zilitinkevich and Mironov 1992,  Tamsalu et al. 1997).  
 
A theoretical explanation for the observed self-similarity was offered for the case of upper 
mixed layer deepening. The condition dh/dt > 0 allows us to transform the heat transfer 
equation,  
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where T is the temperature and Q is the vertical heat flux, by introducing a vertical co-
ordinate ζ with an origin moving at the entrainment velocity dh/dt. After the transformation, 
eq. (2) takes the form: 
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The first term in (3) is of minor magnitude and can be neglected in most of cases (Barenblatt 
1978), leaving us with ordinary differential equation with regard to ζ. Some additional 
assumptions for the heat flux Q(t,ζ) allow to achieve an analytical solution of (3). Solutions of 
this kind, usually called the propagating or travelling wave type solutions, are widely used in 
different branches of mathematical physics. In application to the thermocline problem this 
analysis was performed independently and simultaneously by Barenblatt (1978) and Turner 
(1978). Both the authors examined the case of infinitely deep ocean and used a Fickian 
(gradient) type expression for the turbulent heat flux Q(t,z) = Kz dT(t,z) / dz assuming Kz to be 
a constant or a linear function of the vertical temperature gradient. The uncertainty in the 
vertical distribution of Kz did not allow them to achieve a solution of the equation (3) 
corresponding to the self-similar temperature and density profiles observed in reality.  
 
In its turn, the semi-empirical expressions similar to that given in (Kitaigorodski and 
Miropolski 1970) while reproduce some real situations fairly well, need some additional 
hypotheses about the Θ(ζ) function’s behaviour at the lower border of the density interface. It 
is well known, that underlying stratification can influence the density distribution in the 
interfacial layer drastically. In terms of the dimensionless co-ordinates (1), this influence can 
be accounted for by means of the temperature gradient Γ ≡ dΘ/dζ at ζ = 1. In application to 
the oceanic seasonal thermocline, the condition Γ = 0 is often close to reality and was 
successfully used by many authors (Kitaigorodski and Miropolski 1970, Arsenyev and 
Felsenbaum 1977, Mälkki and Tamsalu 1985). However, the condition of zero gradient is not 
satisfied usually in the atmosphere as well as in shallow lakes. Fedorovich and Mironov 
(1995) have proposed a semi-empirical expression Θ(ζ,Γ) for description of the inversion 
capped convective boundary layer in the atmosphere. The authors have applied the Polhausen 
approach in couple with an empirical expression for the “shape function” - the integral of the 
dimensionless temperature Θ across the pycnocline - as a function of background 
stratification Γ. Extending this approach, we examine a possible representation of the function 
Θ(ζ,Γ) not confining ourselves with polynomial representation of Θ.  

2. PROPAGATING WAVE TYPE SOLUTION OF THE HEAT TRANSFER EQUATION 
 
We assume the entrainment velocity dh/dt to be much higher than the deepening of the lower 
pycnocline border. That means d / d d /dh t h t∆ ≈ . The situation becomes exactly true in 
shallow lakes and reservoirs, where the abyssal quiescent layer may not be present so that 

seasonal thermocline extends from the lower edge of the mixed layer down to the basin 
bottom. 
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Figure 1 Dimensionless temperature profile; 
thick solid line – as given by (5); thin lines – 
previously used approximations: dashed line 
– Γ = 0, Θ = 8/3ζ- 2ζ2 +ζ/3 (Kitaigorodski 
and Miropolski 1970); dotted line – Γ = 0, Θ 
= 1-(1-ζ)3 (Arsenyev and Felsenbaum 1977); 
dash-dotted line –  Γ = 1/5, Θ = 2ζ- 6/5ζ2 + 
1/5ζ4 (Linden, 1975).  
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The following conditions have to be satisfied in order to represent the real situation with 
account of underlying stratification:  
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The first two conditions follow directly from the co-ordinates definition (1). The second pair 
expresses the dependence on underlying stability, where the last condition reproduces the 
behaviour of the integral shape function in the asymptotic case of two-layered fluid. We 
search the function Θ(ζ,Γ) in form Θ = ζ·f(ζ,Γ), satisfying the first two conditions 
automatically. Analysing the second two conditions, the function in question can be written 
as:  

 ( )( )1 1e ζζ − Γ−Θ =  (5) 
According to (5), the infinitely increasing underlying stability Γ will lead to degeneracy of the 
interfacial layer down to the density jump at its lower border. In the second asymptotical case 
Γ = 0, the expression (5) reduces to:  
 1e ζζ −Θ =  (6) 
The shape of dimensionless temperature profile is very close in this case to those found 
previously using Polhausen method (fig. 1). The case of Γ = 1/5 is also shown in the figure in 
comparison with the function achieved by ( Linden 1975) from laboratory modelling.  
The formula (5) can be achieved from the heat transfer equation in the following way. 
Assuming linear dependence of the water density on temperature, equation (3) can be 
rewritten in terms of buoyancy b = -g(ρ-ρ0)/ρ0. Taking into account aforementioned 
simplifications, equation (3) in the co-ordinates (1) takes the form:  

 ( ) d d
1

d d
ζ

ζ ζ
Θ Φ− =  (7) 

Here ( )/ d db w b h t′ ′Φ = ∆  is the dimensionless buoyancy flux. The buoyancy flux profile 

corresponding to the solution (6) of the ordinary differential equation (7) can be found as: 
 

 
( ) ( )

( )2

2 2

22 d /d
1

11 1

ζζ ζ ζ
ζ ζ

 Γ + Γ −− Γ Θ  Φ = + + Γ − −
+ Γ −Γ − Γ −   

 (8)  

which expression reduces in case of Γ = 0 to: 
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Figure 2 Vertical profiles of dimensionless 
temperature Θ, heat (or buoyancy) flux Φ and 
vertical diffusivity χ corresponding the self-
similar representation (6). 
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or, in dimensional co-ordinates:  
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Here N2 is the squared Brunt-Väisälä frequency. The expression (10) clarifies the physical 
meaning of the self-similar buoyancy flux profile. According to it, the turbulent buoyancy 
flux at the depth z is equal to time changing of potential energy at z due to “compression” of 
the thermocline with the buoyancy jump across it being constant. In the fig. 2 dimensionless 
profiles of buoyancy (or temperature), buoyancy flux and diffusion coefficient 

( ) 1
d / dzK ζ −= Φ Θ , are drawn. The profiles reveal the typical features of turbulent 

entrainment in stratified fluid and agree with estimations of heat flux profile in the sea 
thermocline from observations (Tamsalu and Myberg 1998). 

3. COMPARISON WITH OBSERVATIONS 
 

The heat flux representation (9) was tested against results of laboratory modelling on 
entrainment in stratified fluid (Deardorff 1979). The profiles for different underlying 
stratification are drawn in fig. 3 in terms of dimensionless variables ζ and Φ. The accordance 
with experimental data is rather quantitative. Nonetheless, in case of neutral stratification 
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Figure 3 Dimensionless heat flux distribution within the pycnocline on data from laboratory 
experiments of Deardorff (1979).  Dashed lines with dots are measured values, solid lines – 
bouyancy flux profiles as they found from (8). Four plots present cases with different 
stratification under the entrainment layer Γ. 
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under the interfacial layer (case E1 in fig. 3), the solution predicts well the value of buoyancy 
flux at the top of thermocline as –[exp(1) – 2]*∆b*dh/dt. Uncertainties in heat flux estimation 
appearing in other cases could result from the fact that the measured values are taken at the 
initial stage of the experiment, when entrainment process has not stationary nature.  In this 
case, the 1st term in the equation (3) cannot be neglected and the assumption about fixedness 
of the lower pycnocline border is not valid.  

Series of vertical temperature distribution measurements were performed during the summer 

2000 in the Lake Müggelsee located near Berlin, Germany. The observations data were 
processed in terms of co-ordinates (1). In many typical situations, bottom boundary mixing 
destroys the vertical temperature gradient below the thermocline and the temperature profile 
agrees well with that, given by (6). In case of significant stratification at the bottom, the 
formula (5) reproduces the temperature profile deformation fairly good (fig. 4a). The 
representativity of the expression (5) is demonstrated by the dependence of the integral shape 

factor 
1

0
dbC ζ= Θ∫  on the underlying stratification Γ (fig. 4b), which dependence is described 

by the solution adequately in the whole range of the Γ variability. 

4. CONCLUSION. PRACTICAL APPLICATION IN GEOPHYSICAL MODELS 
 
One of the apparent implementations of the self-similarity solution could be integration of it 
in one-dimensional bulk-model of stratified shallow lake, accounting water-sediments heat 
exchange. Practical applications, where computationally cheap parameterised models are 
favoured over more accurate but more sophisticated models (e.g. second-order turbulence 
closures), include modelling aquatic ecosystems and numerical weather prediction (NWP). 
For ecological modelling, a sophisticated physical module is most often not required, and a 
simple parameterised model would represent the best compromise. For NWP, where rather 
stringent requirements of computational economy must be met, the concept of self-similarity 
outlined above is of particular utility. A large number of small lakes that are presently 
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Figure 4. Comparison of the self-similar solution with observations data from the Lake 
Müggelsee. (a) – Dimensionless temperature profiles for the case of strong bottom 
temperature gradient; points with dashed lines are measurements, solid lines – as computed 
with (5); dotted line – asymptotical profile from (6). (b) – Relationship between the bottom 
temperature gradient and the integral shape factor; circles – measurements, line – theory. 
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indistinguishable sub-grid scale features will become the resolved-scale features as the 
horizontal resolution is increased. Such increase is envisaged for most NWP systems in the 
near future. Then, a physically realistic and at the same time computationally cheap model is 
required to predict the evolution of the surface temperature of lakes.  
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