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Freshwaters in global carbon cycle

(Tranvik et al. 2009)

(Bastviken et al. 2011)

3 Fluxes 3

atmospheric carbon : Latitude Total open water Ebullition Diffusive Stored (i::) :

: Emiss. n CV Emiss. n CV Emiss. n CV Emiss. n CV :

: Lakes :

| >66° 68 17 72 64 17 74 07 60 37 288,318 |

1>50°0-66° 66 5 155 91 9 60 11 271 185 0.1 217 2649 1,533,084 !

125°-54° 316 15 127 158 15 177 48 33 277 37 36 125 1330264 |

| <240 266 29 51 222 28 54 31 29 97 213 1 585,536" |

: Reservoirs :

| >66° 0.2 35,289

!>54°—66° 10 24 176 18 2 140 02 4 93 161,352 |

125°-54°  0.7% 116,922 !

| <2 181 11 87 186,437 |

H Rivers |

| >66° 0.1 1 38,895 !

i >540-66°  0.2" 80,009 |

i25°-54° 03 20 302 61,867 |

| <24° 0.9* 176,856 |

!Sumopen 93.1 116 553 71 9.9 397 251 254 !

sediment pool | water !

! Plant flux  10.2 :

Fig. 2. Schematic diagram showing pathways of carbon Sumall 1033 e b

cycling mediated by lakes and other continental waters. The
letters correspond to rows in Table 1.
@ Total freshwater methane emission is 104 Tg yr~!, i.e. 50% of global wetland

emission (177-284 Tg yr~*, IPCC, 2013)

@ greenhouse warming potentials from freshwater-originating CO2 and C'H4 are

roughly equal
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COs emissions by lakes and rivers
Raymond et al., 2013, Nature

Longitude Longitude
Lakes Rivers

e global emission of CO, by freshwaters is 2.1 Pg C yr—!

e lake emission is 0.3 Pg C yr—!

, river emissions is 1.8 Pg C yr—!

@ significant contribution of Volga hydropower reservoirs
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Emission of greenhouse gases from reservoirs
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o Artificiallt flooded ecosystems are imposed to both aerobic (producing
CO3) and anaerobic (producing CH,) degradation

e Compared to natural lakes there is an additional pathway of gases that is
through turbines
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Global warming of lakes
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Figure 1. Map of trends in lake summer surface tem peratures from 1985 to 2009. Most lake s are warming, and there is large

’Reilly et al., 2015, GRL, doi:10.1002/ 2015GL066235
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The majority of lakes are warming at a rate higher than T5,,.
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1D lake model framework

1D equations result from boundary-layer approximation

@ 1D heat and momentum equations
@ k — e turbulence closure

@ Monin-Obukhov similarity for surface
fluxes

@ Beer-Lambert law for shortwave

radiation attenuation

@ Momentum flux partitioning between
wave development and currents
(Stepanenko et al., 2014)

@ Soil heat and moisture transfer
including phase transitions

@ Multilayer snow and ice models
1D concept does not suffice the greenhouse
gas modeling task, as it does not take into

account differences between CHy4 & CO>
emissions at deep and shallow sediments
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1D* framework

Traditional 1D model concept

[N

1D model concept

Soil column

@ 1D™ model includes friction, heat and mass exchange at the lateral boundaries

@ Heat, moisture and gas transfer are solved for each soil column independently

In 1D* model horizontally averaged quantity f obeys the equation:

of d af
D= TPk 4 F(et + .
at laz. ! BZ (Z7 ' f’ .) -
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Coupling heat transport in water and soil
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Boundary conditions:
at soil-water interface

@ Continuity of
temperature (gas)

@ Continuity of flux
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1D equations for enclosed basins

Horizontally-averaged 3D equations for basic prognostic quantities:

oT 10 oT
prwa =" Z& (A (Am + prwVT) E) -

1 0AS 1dA

~ A 8s + ZE[SZ’ + Frp(z)], - heat conservation equation (1)

%—... —i—lg(A(V—I—V )@)_’_
ot A0z "9z

1dA
+ Zd_Fub(Z) + fv, — momentum equation for x-speed component (2)
z

ov 10 ov

1 dA
i ili_z F,4(2) — fu — momentum equation for y-speed component 3)
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Barotropic pressure gradient and seiches

: Y
Barotropic Lake surface
(surface) seiches
are lake surface
and related L}o ve
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Biogeochemical processes in the model

@ Photosynthesis,
respiration and BOD are
empirical functions of
temperature and Chl-a
(Stefan and Fang, 1994)

Oxygen uptake by
sediments (SOD) is
controlled by Oz
concentration and
temperature (Walker and
Snodrgass, 1986)

Methane production

o Pogly ™, Py is
calibrated (Stepanenko et
al., 2011)

Michaelis-Menthen
equation
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Model validation for Seida Lake

Guseva et al., Geogr. Env. Sust., 2016

Seida lake location

300

Bubble flux (starting fro

m 01.07.2007)

200

* F P o= 410 molmYs), constp
* F P =4 10" mol (m¥/s), measured p
250 @  observation data

150

100

50

Table 3. Methane productionrate constant P, ., oin other studies

days

Prew, o0 (mol -m™3-s71)

Source

30-108
255108
83-10%-16-107
40-108

Lake Kuivajarvi, Finland [Stepanenko et al, 2016]

Shuchi Lake, North Eastern Siberia, Russia [Stepanenko et al,, 2011]

High latitude wetlands [Walter & Heimann, 2000]

Lake at the Seida site, current study
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Kuivajéarvi Lake (Finland)

@ Mesotrophic, dimictic lake

@ Area 0.62 km? (length 2.6
km, modal fetch 410 m)

@ Altitude 142 m a.s.l.

@ Maximal depth 13.2 m,
average depth 6.4 m, deptl
the point of measurements Depth (]
12.5 m [J<15

[15-3
03-6

o Catchment area 9.4 km? =0
>10

Qe

] [ = =
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Methane

Stepanenko et al., Geosci. Mod. Dev., 2016

Measurements Model

Methane, 19/l

Methane measured, jg/!

= 536.03551132° maxval = 351.5111

Depth, m

9 10 1

7 8 9 10 6 7
Time, months

Time, months
@ Methane starts to accumulate near bottom in the late summer when oxygen
concentration drops to low values
@ Surface methane concentration is very small leading to negligible diffusive flux to the
atmosphere, consistent with measurements
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Carbon dioxide concentration
Stepanenko et al., Geosci. Mod. Dev., 2016

Measurements Model
Carbon dioxode measured, mg/l Carbon dioxide, mg/l
18 18
15 15
12 12
£ £
< £
2 2
[ 9 o 9
[a] o
‘ 6 6
‘ 3 3
A
7 8 9 10 0 8 9 0

Time, months Time, months

@ Seasonal pattern is simulated realistically: carbon dioxide is consumed by
photosynthesis in the mixed layer and produced in the thermocline and hypolimnion
by aerobic organics decomposition

@ Sudden COg increase prior to autumn overturn is absent in the model
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Further development: dissolved and particulate carbon
Adopting approach from Hanson et al., 2004

0, Extended biogeochemical model
(1) co,
co, Atmosphere 9CcH 4
—— 4 _pifu(C B o) 1
ﬁﬁ (3) DIC, DOC, POC ot ifal CH4) * CHa CHy o
(6)co, {7) DIC, DOC, POC
: aCo,
Pyl Dif4 (Coy) + Boy + POy —
ROy = Poy = S0y = C0g» (2)
9Cpic .
et Difs(Cprc) + Bcoy, — Pcogy+
Rco, + Doy +Sco, +0coy: 3)

@ The Hanson et al. model is

reformulated to explicitly reproduce _
vertical distribution of DOC, POCL,

POCD (instead of using mixed-layer _ (5)

and hypolimnion pools, as in original

@ The horizontal influx from _ (6)

catchment is included given the inlet
o & = = I

measurement data
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Surface carbon dioxide concentration
Kuivajarvi Lake, June 2012 — December 2013

Model
Measurements Old carbon model, New carbon model,
' New carbon model with NO inflow
8 12
" C0;, 0.2, carbommodell
7 . C0;, 02m, carbonmodel2
10+ — 0y, 0.2m, carbonmodel2notrib
8 5
< 5 e
s g
H ¢
g 4 =
5 £
: <
2 e
¢
1
0
4172012 7102012 10/18/2012  1/26/2013 5/6/2013 8/14/2013 112272013 i 0 B 1 6 3 10 19 11 6 I
Time Time, months

Surface CO2 concentrations (~8 mg/1 in winter, 2-3 mg/] in summer) are well
captured by the model — dynamics of DOC and POC may be crucial to simulate
lake-atmosphere CO2 exchange
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Earth system model INMCM

Developed by Russian consortium lead by Institute of Numerical Mathematics
Model includes:
Atmospheric dynamics

Soil and vegetation

°
@ Oceanic dynamics, including sea ice
e Carbon cycle
e Aerosol module
e Some electric phenomena
Participated in: CMIP3(2003-2004), CMIP5 (2010-2011)
Participates: CMIP6 (2017-2018)
Current versions:
o INM-CM4-8: Atmosphere 2x1.5 degrees, 30 levels, the uppermost level at
10hPa. Ocean: 1x0.5 degrees, 40 levels
o INM-CM5-0: Atmosphere 2x1.5 degrees, 73 levels, the uppermost level at
0.2 hPa. Ocean: 0.5x0.25 degrees, 40 levels.
o INM-CM5-H: Atmosphere 2x1.5 degrees, 73 levels, the uppermost level at
0.2 hPa. Ocean: 0.5x0.25 degrees, 40 levels.
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Incorporation of LAKE model into LSM

Land surface model:
e tile approach including: bare soil, vegetation, snow and inland waters
e inland waters are represented by soil with the surface properties of water
e time step is 1 hour

LAKE model modifications:

@ k — e model does not allow more than 1-10 min timesteps — changed to
Hendersson-Sellers diffusivity + convective mixing

o lake morphometry effects excluded

e surface flux scheme from LSM is applied
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Global lake coverage at INMCM model grid

Extracted from Choulga et al., 2014 database
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New lake parameterization vs. old parameterization

ExemDhﬁed for lake tile of cells containing Lake Baikal

Average monthly values of Surface temperature
30 - L !
INM param

Lak
20 il

oC
(=]

-20

-30 T T
[ 10 20 30 40 50 60

months
Average monthly values of Sensible heat flux

100 L L L L
INM param

80 Lake

60

40

Wim2

20

0

-20 T T T T
o 10 20 30 40 50 60
months
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The maximal values of lake surface
temperature, sensible and latent heat
flux are shifted towards autumn

Average monthly values of Latent heat flux
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lake biogeochemistry
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Lake.
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Outlook

o LAKE model was successfully tested in terms of CH, emissions at three
lakes: Shuchi (North-Eastern Siberia, Stepanenko et al., 2011), Seida
(North of European Russia), Kuivajarvi (Finland)

e introducing of POC and DOC dynamics in lakes improves COq
simulations for Kuivajarvi Lake

o LAKE model has been incorporated to land surface scheme of INMCM
Earth system model (+1 ESM with lake parameterization), the
temperature and surface fluxes are reasonably reproduced but ...

o further performance testing is needed, involving satellite-derived surface
temperature for biggest lakes and feedbacks from lakes on surface
atmospheric fields

e lake biogeochemistry modeling in LSM is coming... but new external
datatsets and global validation data would be needed

The work is supported by grants RSF 17-17-01210 and RFBR. 17-05-01165
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Soil columns in the model

Horizontal projection

Soil columns are geometric figures of the same vertical dimension and with
horizontal sections confined by sequential isobaths:
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Freshwaters in olobal carbon cvele
(Tranvik et al. 2009)

S .

(Bastviken et al. 2011)

Latitude Total open water Ebullition Diffusive Stored (::?) |
Emiss. n CV Emiss. n CV Emiss. n CV Emiss. n CV :
i Lakes '
| >66° 6.8 7 72 64 17 74 07 60 37 288,318 |
| >54°—66° 6.6 5 155 91 9 60 11 271185 0.1 217 2649 1,533,084 !
125°-54° 316 15 127 158 15 177 4.8 33 277 37 36 125 1330264
| <24 26.6 29 51 222 28 54 31 29 97 213 1 585,536 |
: Reservoirs :
| >66° 0.2 35,289
[ >54°-66° 1.0 24 176 18 2 140 0.2 4 93 161,352
125°-54°  0.7F 116,922 |
| <24° 18.1 1 87 186,437
: Rivers :
| >66° 0.1 1 38,895 !
| >54°-66° 02" 80,009 |
| 25°-54° 03 20 302 61,867 |
| <24° 0.9* 176,856 |
; Sum open  93.1 116 553 71 9.9 397 251 254 :
| water ;
! Plant flux  10.2 :
Fig. 2. Schematic diagram showing pathways of carbon (sumall 1033 e i

cycling mediated by lakes and other continental waters. The
letters correspond to rows in Table 1.

@ Total freshwater methane emission is 104 Tg yr™

emission (177-284 Tg yr~*, IPCC, 2013)

@ greenhouse warming potentials from freshwater-originating CO2 and C'H4 are

roughly equal
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Thermocline thickness

| HM
' |m”
— Thermocline thickness_base
—— Thermocline thickness_obs

5 6 7 8 9
Time, months

e

IS

w

Thermocline thickness, m
N

Thermocline thickness is defined as a depth difference between 8 °C
and 14 °C isotherms
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Methane budget in the surface mixed layer

— Diffusion at the lake surface base
200H __ piffusion at the bottom of mixed layer _base
— Diffusion-+ebullition from mixec-layer sediments _base
— Ebulltion at the bottom of mixed layer _base
— Ebulition at the lake surface base
Oxidation in the mixed layer_base

100,

W\ | v
I

|
\T\ Mixed layer Y

6 7 8 10 11
Time, months

g VA IR W

Wt I Pl

CH, flux, norm. by surf. area, mg/(m? day)

The diffusive flux through thermocline is negligible compared to other terms

] [ =
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TKE

TKE balance terms

0
— TKE base
TKE_Gill
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“af| - TKE Gl noseiches )
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" 4
" : )
3
i
bl
- -8 M
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Significance of Coriolis force for Kuivajarvi Lake

NH . \Vgrg ' Ap hur
o V9P 2P 2L

Rossby deformation number, Ro = e

3500
3000}
The lake’s length
. 2500F "7 T W, T
Rotational effects
are comparable 20001
with those of E
stratification. & 1500l
1000t
500}
‘ — Internal Rossby radius_base|
0 . n N n n /
4 5 6 7 8 9 10 11

Time, months
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The effect of barotropic seiches on methane

Control simulation Seiches excluded

4
- 540
maxval = 351.5111 0
P
450 5
50
360
%0
£
£ 4
3
0§ R
18 L
9
9 10 1 0

Methane, g

~

Depth, m

0

i “
8 9 10 n g

6 7 8
Time, months

Time, months

Neglecting barotropic seiches leads to TK' E ~ 0 below thermocline, less
oxygen flux from above and earlier accumulation of methane near bottom
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Effect of weak turbulent mixing in the thermocline

Control simulation Increased minimal
diffusion coefficient (10 * Awo)

T
maxval = 35151118540 e
150 maxval = 48.37865
‘350
270 €
180
6 7 8 9 10 1 0

Time, months

Methane, g

Depth, m

7 8 9 10 11
Time, months

Oxygen diffuses downwards, oxidizing methane
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Observations Measurement raft

@ Conducted since 2009 by University of
Helsinki

Ultrasonic anemometer USA-1, Metek
GmbH

Enclosed-path infrared gas analyzers,
LI-7200, LI-COR Inc.

Four-way net radiometer (CNR-1) Ff (t’Otprint of thot
rait measurements

relative humidity at the height of 1.5 m
(MP102H-530300, Rotronic AG)

@ thermistor string of 16 Pt100 resistance
thermometers (depths 0.2, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 10.0
and 12.0 m)

Distance (meters)

Turbulent fluxes were calculated from 10 Hz
raw data by EddyUH software

=] 5 = = E DA
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Internal seiche mixing parameterization in £ — ¢ model
Goudsmit et al. 2002

@ Shear production is generalized to include seiches P = vy M? + | P ;

@ TKE production by seiche-induced shear at lake’s margins
P, = 1-Caiss\/Cd,bot 1 dANQEd/Q E

- pwoc Ay o s - seiche energy;

@ Seiche energy is derived from wind forcing: ddEtS = aAopaCa(u? +0v?)3/? — ~E3/?

@ Stationary Richardson number (Burchard, 2002) may be derived for this case as
Ris = Pricey ~ 0.30 for typical wind speed

Aceoz— 1/ PTC Acezl(u2+u2)3/2

Time. manths.
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Kato-Phillips experiment

@ no heat and radiation flux at the top and bottom boundaries
e constant surface wind stress 0.01 N/m?

@ linear stable initial temperature profile, 2 K/m

e no morphometry

no rotation

depth 7 m, 60 vertical computational layers

10 days of the model integration
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Kato-Phillips experiment results: Standard k-e model

Time-depth distribution of velocity Temperature and eddy conductivity profiles
x-speed component, m/s 0.3909 9-th day

0.3714 Eddy heat conductance, m? /s

0.3519 0.8000 0.0905 0.0910 0.0015 00020 00025 0.00:
0.3323 ‘? Eddy heat conductance —_ Tem t
03128 y perature
02932 It T
0.2737

0.2541 | ]
0.2346

0.2150

0.1955 E£3f 1
0.1759 £

0.1564 §47 |
0.1368

0.1173

0.0977 5t 1
0.0782

0.0586 | |
0.0391

0.0195

0.0000 7 L L ! .

104 10.6 10.8 11.0 11.2 114 11.€
Temperature, C*

w

Depth, m
F=

Tme. davs o
. . . . After complete mixing of temperature the
he deepening of the mixed layer follows well the know . .
. ~1/2,1/2 . flow is classical Cuette flow
formula Hyrp, = 1.05uxw N, ~/“t*/2 (Price, 1979) o o = = =
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Kato-Phillips experiment: k-e model + barotropic seiches

0

Depth, m

Time-depth distribution of velocity

x-speed component, m/s

0 2 4 6

Time, davs

8

10

0.1556
0.1424

Temperature and eddy conductivity
profiles, 9-th day

Eddy heat conductance, m? /s

0.1292 ogooo 00002 0.0004 0.0006 0.0008 0.0C

0.1160
0.1028
0.0896
0.0764
0.0632
0.0500
0.0368
0.0236 ¢
0.0104 ¢
-0. 0028“

-0. 0160Q [

-0.0292
-0.0424
-0.0557
-0.0689
-0.0821
-0.0953
-0.1085

5

7

3L

6F

‘ —_ Eddy heat conductance M —_ Temperature

7 8 9 10 11 12 1
Temperature, C*

The bottom return flow creates another mixing layer, having
very thin extremely stratified interface with the upper one
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Kato-Phillips experiment: k-e¢ model + baroclinic seiches

Time-depth distribution of velocity Temperature and eddy conductivity

‘ x-spee_chompongnt, m/s . 0.1035 proﬁles, 9-th day
0.0961 Eddy heat conductance, m? /s
0.0888 08000 00001 0.0002 00003 00004 00005 00006 0.0(

88?5 I— Eddy heat conductanceM —_ Temperature

0.0669
0.0596
0.0523
0.0449
0.0376
0.0303
0.0230
0.0157
0.0084
0.0010
-0.0063
-0.0136
-0.0209
-0.0282
—-0.0355
—-0.0428 4 \ \ \ \ \
0 2 4 6 8 10 4 6 8 10 12 1 it
Tlme, davs Temperature, C*
The response of velocity to wind stress is waves, with dominating 1-st vertical mode, ~ 1

day period. The thermocline is preserved, with both surface and bottom mixed layer

Qe
present
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Mixed-layer depth

e Rotation and seiching

0
— Tybuna nepeserntannoro ciost 1o k — e mogenn, K-P
--- Tuybuna nepenelianioro ciiosi 1o k — e moged, K-P+kor
1 ==+ [iybnsa nepemenanioro ciios 1mo k — e Mogedi, k-P+bts
----- + Tybuna nepensertannoro ciost 1o k — e Mojesn, K-P+bes

impose similar
suppressing effect on
vertical mixing

™

Cnyouna, M
w

e Barotropic seiche
parameterization is not
enough to produce
"correct" mixing

0 100 200 300

K-P — Kato-Phillips experiment,

700

800

K-P+kor — Kato-Phillips experiment with Coriolis force,
K-P+bts — Kato-Phillips experiment with barotropic seiches,
K-P+bts — Kato-Phillips experiment with baroclinic seiches
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Mixed-layer depth

Ty6uia mepeMeantoro ¢1os Mo k — e Moz,
TiyGuna nepemelianHoro ¢J1os 110 k — € Mogellit
Ty6uia mepeMemantoro ¢/1os o k — e Moz,
TryGina Tepenelanioro ¢1os 1o k — € MOJeJIL,

Ti1y6iuna nepemetatoro c:ios 10 k — e Mojie
To1yGuna nepememanioro c1os 10 k — e Mojei,

K-P

K-P—

K-P
K-P
K-P
K-P

kor | bes, 300m
bes, 300
kortbes, L
bes, Ly
kor+bes, 300xu
bes, 300km

300 400

Bpeus, 1

500 600

700

800

Kato-Phillips experiment with Coriolis force and baroclinic seiches at

different lake sizes:

300 mx300 m. Le X L and 300 kmx300 km (Ip ~2.77 km)

@ Coriolis force playes significant role in mixing compared to seiching only for the lake size
L>1L R

@ The effect of Coriolis force for very large lakes is similar in magnitude to that of seiching
for small lakes
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Why the mixing is suppressed by rotation and seiching?

@ In classical Kato-Phillips setup, the friction is zero at the base of mixed
layer, leading to continuous increase of total momentum in mixed layer
(under constant momentum flux from the atmosphere), the shear
production of TKE and mixed-layer deepening until complete mixing of
temperature and achieving stationary Cuette flow (where the momentum
flux at the top is compensated by friction at the bottom)

@ In both cases of rotation and seiching quasi-stationary oscillatory velocity
patterns are established where Coriolis and pressure gradient terms
(respectively) "consume" the constant momentum flux from the
atmosphere
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[Torpanmasbie cjion B BojoeMax (JlaHHble HAOJTIO/ICHI )

Turbulence level € (W kg-")
10—-10  10—9 10—8  10—7

DL TTITT T T T T T Ty T T T g T

E Surface layer

0= Interior /(©
E - (stratified) extremely calm
= 0= —_—
BI15
S ey =
20 ] ! | __10 =
B —_—- Bottom - 3 E
$ boundary - ® = turbulent
- = layer - £8
25 B8 == {layer . s 55 =
E —-— § a5
= — & o
30 I'_A_mel_i_u.uuxl_l_l_l.uu&md_l_t.u (]

@ BepxXHUII IepeMerannbiii cyioit — snmmmmuanod: TKE rermepupyercs B
OCHOBHOM 38 CYeT CABHIa CKOPOCTHU (~ HAIPSIKEHUE TPEHHUS )

@ cpeJHUiT CII0H — METAJIMMHHUOH (TEPMOKJIVH): OU€Hb YCTONINBO
CTPATHMOUITIPOBAHHBIH

o mmKkwuil cioit — runonumanon: reneparnnsa TKE 3a cuer casura
BHYTPEHHUX IUpPKyJsiiuii (ceiimu, Bonn Kenberuna)

Wiiest and Lorke 2003, Annu.Rev.Fluid Mech.
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Kpurepuit cripaBeiinBoCcTi OJJHOMEPHOT'O HIPUOJIMKEHIST
ITokazano Ha npumepe o3.KyiiBaspsu (Puuisasmms)

Running means

— Wedderburn number_base

100

Wedderburn

80
number

_ glphi %
‘ W= poull =

Wy, = % 2

Shintani et al., 2010 5 6 7 8 9 10 11

Lake number
T Apuf 80
L _ 2(mezv)Vpogh1 70
N = ZUTA()L

— Lake number_base

LN,cr =1 g

Thermocline

displacement is

negligible compared oM

5 6 7 8 9 10 11

to mixed-layer depth Time, months

Imerito, 2015
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Cxembl MapmipyTusanuu BogoTokos (Ha mpumepe TRIP)

o~ Channel resolution

WRF-Hydro
routing algorithm

o BruruncimresbHo IIPOCThIE CXEMBbI, JJOCTATOYHbIE JIJIdd BOCIIPOU3BEIACHUA
CpeaJHUuX pacxoa0B

o Jlmarnoctudeckue GOpMyJIbl JIJIsT PACX0/Ia PEK -> HE BOCIPOU3BOIST
IKCTPEMAJIbLHBIE SBJICHUS

o Her pacuera TepMoMHAMUKH ¥ JIHTOOOPA30OBAHMUST

o He yunrniBaiorcst 6MOreOXMMUIECKHE TTPOTECCHI

V.M.Stepanenko (MSU) Towards a lake biogeochemistry 19 October 2017 44 / 59



MO,ZLeJII/I BOJOEMa B KIIMMAaTUYCCKUX MOJIEJIAX N CUCTEMaX
IIPOTr'HO3a II0I'0AbI

Mognenb Mopenb BopoeMa
KnuMaTa/nporHosa

noroabl
IFS (ECMWF) FLake
UKMO (MetOffice) FLake
COSMO (European FLake
Consortium)
HIRLAM (European FLake
Consortium)
CESM (US consortium) CLM-LISSS4
CRCM (Canada) Flake/Hostetler
WRF (Penn SU) FLake

=} = = E = 1PN G4
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MO,ZLeJIb ITy3bIPpbKa

For shallow lakes (several meters), bubbles reach water surface
not affected, for deeper lakes bubble dissolution has to be taken
into account.

@ Five gases are considered in a bubble: )
CHy4, CO2, O2, N3, Ar

@ Bubbles are composed of CH4 and Na when they are
emitted from sediments

@ The velocity of bubble, vy, is determined by balance
between buoyancy and friction

@ The molar quantity of i-th gas in a bubble, M;, changes

according to gas exchange equation (McGinnis et al.,
Methane ebullition
dM 8M from different soil columns

praal = —4nri K;(H;(T)P; — C;).

@ Gas exchange with solution is included in
conservation equation for i-th gas :

oc; 1.0 kE)Ci " n
at  Adz 0z

F(z,t,Ci, A) +

Surface bubble flux, »

A dz o = Qe
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[Tpumep: cuerona bl HaJ| Besuknvu AMepUKaHCKUME
ozepamu (lake-effect snow)

[Ipu X0JIOTHBIX BTOPYKEHUSIX
KOHTUHEHTAJIbHOI'O BO3/IyXa
WHTEHCUBHOE UCIIApPEHUE U
KOHBEKITUST TPUBOJISAT K
00pa30BAHUIO OOJIATHOCTH U

Lake Effect Snow
Conceptual Model

—_—> 0CaJIKOB.
Cold air —>
> Heat & Moisture g—
Land Warm water Land

Water must be at least 23°F warmer than the air.

"Osepubie cueromnaipr"
apau3yioT JTOPOXKHYIO CUTYAIIHIO,
3aKPBIBAIOTCS IKOJIbI, OTMEHSIIOTCS
roJieTsl 1 T.JI. B Teuenune XX B.
HabOJTIOMAeTCS TPEH YBeINIeHIe
CYMMBI CHEKHBIX OCAJIKOB B
JaHHOM paiione, +1.9 cm rog L.
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Example: convection over Great African Lakes

CTL - NOL (09-18 UTC) CTL - NOL (21-06 UTC)

0.01

B fB
v 0.005
2°s
4°5 0
st
: N _ .0.005

BOS ...".é;. ..... ...g‘ i sesessrafesirncspaas:

¥ 07 200 = 400km : i T 200 2 donim

z 2 £ ool
26°E  28°E  30°E  32°E  M°E  3°E 26°E  28°E 30°E 32°E 34°E 36°E -0.01

FIG. 15. The 1999-2008 mean change in convective mass flux density at cloud-base height (kgm *s ') induced by
lake presence, for (a) 0900-1800 UTC (daytime) and (b) 2100-0600 UTC (nighttime).

Nocturnal convection over Victoria accounts for annual
fishers death toll ~ 5000.

Thiery et al. 2015, J. of Climate, DOI: 10.1175/JCLI-D-14-00565.1
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Example: cloudiness over the Ladoga Lake

Fig. 3. NOAA AVHRR thermal TR images over Finland and
Karelia on 28 January 06 UTC (a) and on 29 January 00 UTC
(b) 2012. The low-level cloud cover, shown with dark-grey shades,
spreads first northward (a) and later westward (b) from Lake
Ladoga. In the single-channel images, the cloud over Lake Ladoga
cannot be distinguished from the dark water surfaces. The stations

Cloudiness increases the surface
net radiation, and
2m-temperature rises by
15-20°C

Eerola et al. Tellus A 2014, 66, 23929,
http://dx.doi.org/10.3402 /tellusa.v66.23929
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Temperature (C)

Ice-free lake evaporates, and
resulting stratiform clouds are
advected to Finland.
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Cxema BK/NIOYEHUA MOAEeNN BOA0eMOB
Lake B mogens INMCM

Ts,H,LE,Tt T

«ATmocdepHbIi» 6a0K INMCM

Pacnpe,qeneuwe TWUNOB PacTUTENbHOCTH

BK/1104aA BHYTPEHHWE BOJOEMbI

T

l U,V,T,P,SH,LW,Pr

Ts,H,LE,T

A

Kapta cpeaHux rny6uH BOA0EMOB B

AYEHKAX KNMMATUHECKOH mogenu
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Water temperature

Measurements Model

sured, °C Temperature, °C

i ; ””“ T

Depth, m
Depth, m

Time, months Time, ?mnths ’
@ Mixed layer depth and surface temperature (RMSE=1.54 °C) are well
reproduced

@ Stratification strength in the thermocline is overestimated

@ Model results lack frequent temperature oscillations in the thermocline
] [ = =
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Oxygen

Stepanenko et al., Geosci. Mod. Dev., 2016

Measurements Model
0 Oxygen measured, mg/| Oxygen, mg/l
9.0 9.0
2
7.5 7.5
4
6.0 6.0
£ £
£ g
a a
[ 45 © 4.5
[a] o
8
3.0 3.0
10
15 15
12
6 7 8 ) 9 10 00 8 9 00

Time, months Time, months
@ Seasonal pattern is well captured: oxygen is produced in the mixed layer and
consumed below
@ Oxygen concentration in the mixed layer is underestimated by 1-1.5 mg/l, and more

significantly during autumn overturn
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Measurements Measurement raft

@ Conducted since 2009 by University of
Helsinki

Ultrasonic anemometer USA-1, Metek
GmbH

Enclosed-path infrared gas analyzers,
LI-7200, LI-COR Inc.

Four-way net radiometer (CNR-1) Ff (t’Otprint of thot
rait measurements

relative humidity at the height of 1.5 m
(MP102H-530300, Rotronic AG)

@ thermistor string of 16 Pt100 resistance
thermometers (depths 0.2, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 10.0
and 12.0 m)

Distance (meters)

Turbulent fluxes were calculated from 10 Hz
raw data by EddyUH software

=] 5 = = E DA
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Motivation for inclusion of rivers in ESMs

e river runoff affects thermohaline circulation
e river runoff is the most precisely measured component of the land water balance
e rivers are considered as an substantial player in land carbon cycle

e the level and ice regimes of rivers can become the one of the most in-demand output of
ESMs

Atmosphere | Hs51E-1538: A global data analysis of sediment and
1.2 organic carbon yield for modeling riverine
biogeochemistry

Conference Paper - December 2016

2.7,
0.9 1t Zeli Tan 2nd L Ruby Leung
111917 - Pacific Northwest National Labo, 11453 - Pacific Northwest National Labor.
3rd Hongyi Li
113018 - Montana State University
¥ Abstract

0.6 Although soil erosion could have significant impacts on the global carbon cycle and the well being of aquatic and

All values are in Pg C yr—! (Battin et al.,

2009) 0> 3
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N
River runoff in INMCM model

0 Y N O S O O T 1T
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@ 54 major basins

@ surface and subsurface runoff are integrated over basins and instantaneously
"added" to oceans in salinity equation

@ no river tile in the surface energy balance calculations

oy S = = Dac
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River routing for Earth System Models

Exemplified by (Yamazaki et al., 2009)

Stream upscaling

Coarse-resolution cells Fine-resolution pixels

1 2 3 4
River B
A Al
u =
o e A uEEp
B .
c

@) (b)

~ Fine-resolution flow path  memmefp Coarse-resolution river networks ] Outlet Pix

External parameters for river

model:
o flow direction
70 80 % 100 110 120 130 140 15
) riverbed slope Fig 6. Ilustration of the Monsoon Asian par of an upscaled river network map at the resolution of 1 degree. Bold biue lines indicate riv
channels of the upscaled river network map, and circles indicate cells representing a river mouth.

@ parameters of cross-section
geometry
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Riverflow dynamic equations

Saint-Venant system:

oS  oSU
R
Ohy +hy)  gU2. & AU
~ g - + v
Ox C?2(R)R Oz ' Ox
h. = f(9).
°
° |5

are inertia terms that can be omitted if Fr = WEAM <1
| < |%2| at Fr < 0.1 (Dingman, 1984)

@ Longitudinal viscosity effects are also considered small

Using Ahp = %Am = sAz, Froude number criterium becomes

2
Az > 10U

~ 100 m for plain rivers.
S
Under these conditions comes Manning’s equation:

V.M.Stepanenko (MSU)
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k — € turbulence closure

- counter-gradient

effects missing

M — friction frequency,
N — Brunt-Vaisala frequency

k-g parameterization

Boundary conditions

D¢

V.M.Stepanenko (MSU) Towards a lake biogeochemistry 19 October 2017 58 / 59



Average monthly values of Latent heat flux Average monthly values of Sensible heat flux
150 ir N N 100 1 L L L L
INM param. | 4 param
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Average monthly values of Surface temperature
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