5th workshop on "Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling"

Berlin, 16-19 October, 2017

Evaporation from lakes in Antarctica

Elena Shevnina and Ekaterina Kourzeneva Finnish Meteorological Institute, Helsinki, Finland

- Previous measurement campaigns focus on evaporation;
- · Water balance. What for ...?
- · How evaporation term is calculated?
- · What method is the best to calculate evaporation?

• Step forward: future measurement campaign in Antarctica ...

Aim, objectives, areas ...

<u>Aim:</u> to evaluate the thermal regime and components of the water balance of Antarctic lakes.

<u>Objectives:</u> ... to investigate the connection between the thermal regime and water balance through evaporation.

Measurements and formulas ...

Measurements: lake water level, inflow/outflow water level and discharge, visual observations on ice forms, standard meteorological observations ...

Water balance of lakes

$$\frac{dV}{dt} = P + Y_{in} + G_{in} - Y_{out} - E - G_{out} - W$$

 $oldsymbol{V}$ is the lake water volume,

t is the time (the period of observations),

P is the precipitation,

 Y_{in} and Y_{out} are the surface inlet/outlet runoff,

E is the evaporation,

 G_{in} and G_{out} are the subsurface inflow/outflow runoff, W is the water supply for human activity.

Evaporation formulas ...

<u>Measurements:</u> lake water surface temperature, standard meteorological observations at nearest WMO station ...

<u>Dalton-type empirical formulas:</u> <u>Evaporation from lakes' surface, mm day</u>-1

$$E = 0.14 \left(e_0 - e_{200} \right) \left(1 + 0.72 \ w_{200} \right)$$

 ${m e}_0$, hPa is the water vapor pressure at saturation, ${m e}_{200}$, hPa is the screen level water vapor pressure, ${m w}_{200}$, m s⁻¹ is wind speed. These values are daily averaged.

Evaporation from Flake surface—layer block

Daily values of Evaporation ...

	Lake	E, mm day-1	E _{Flake} , mm day-1
FA	Mirage	0.8	1.1
	Slalomnoe	0.8	1.2
	Kitezh	1.0	1.3
	Srednee	0.9	1.2
	Dlinnoe	0.9	1.4
	Glubokoe	1.3	1.3
LA	Stepped	1.6	1,9
	Progress	1.4	1.9
	Sarah Tarn	1.5	1.8
	Scandrett/Nella	1.4	1.8
	Reid	1.7	1,9

^{*}E ... after empirical equation,

... LWST_{sim} bias was up to 0.6-0.7 °C ...

... there was no systematic errors LWST_{sim} ...

^{**} E_{FLake} ... after surface-layer block

Seasonal values of Evaporation ...

(EFLake-E)

aprox. 25 %

Method to calculate evaporation

Importance of the method used to calculate evaporation

$$D, \% = (E - E_{Flake})/dV$$

where, dV is the seasonal change of the lake volume.

Not important:

the evaporation is <u>small</u> compared to other terms (surface inflow/ouflow)

... Endorheic lakes

Important:

the evaporation is comparable with other terms

... Evaporation and water balance estimated by FLake might be sensitive to the light extinction coefficient...

... the <u>evaporation</u> calculated by the atmospheric surface—layer block of FLake is 20-40 % larger than the values evaluated from the empirical equation.

... the method of calculating evaporation is important to the water balance calculations for endorheic lakes, and for lakes with a small difference between the surface water inflow and outflow.

Step forward ... the calculations of evaporation should be further proved by observations.

Measurement campaign 2017-2018

The Schirmacher Oasis: 70.45'30"S, 11.38'40"E

Height - 100 m asl

Length - 25 km

Width - 3 km

Area - 35km²

lakes - 2km²

Instruments ...

Water temperature: termochrone iButtons

LWST

Lake morphometry, groundwater level, snow properties, etc: ... GPS, lines, wells, tape, sticks, weight kit etc ...

Water Level: HOBO loggers

WL

Water discharge: micro current meter GR-55

WD

Evaporation: IRGASON by Campbell

EVA

Measurements:

- · absolute carbon dioxide
- · water vapor densities
- · three-dimensional wind speed
- sonic air temperature
- air temperature
- · barometric pressure

Places and measurements ...

· Yellow: WL, LWST, ph

· Red: WL, LWST, EVA, dissolved CO2 (?)

· Blue: LWST, ph

 Surface inflow/outflow, ground water level, snow properties ...

Lake ZUB/PRIYADARSHINI

Surface area: 0.46 km², max depth: 6 m

Conclusions ...

- The calculations of evaporation from lakes should be proved by direct measurements;
- The evaporation term could be important for endorheic lakes located in the polar regions;
- Our first Antarctic experiment with measuring by evaporation with method of eddy-covariance;
- · Looking for questions and suggestions...

... Our special thanks to Daniela Franz, Miguel Potes and Arseny Artamonov...

Thank you for attention!

Acknowledgement:

ASPIRE project, Academy of Finland

Logistic is supported by: Finnish Antarctic Research Program, Russian Antarctic Expedition