Paleo-lake simulations for extreme seasonality changes during the late deglaciation

Frederik Schenk^{1,2}

Christian Stranne^{1,3}

Minna Väliranta⁴, Svante Björck⁵, Barbara Wohlfarth¹

1 Bolin Centre for Climate Research and Geological Sciences, Stockholm University, Stockholm, Sweden

2 Department of Mechanics, Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm, Sweden

3 Center for Coastal and Ocean Mapping Joint Hydrographic Center, University of New Hampshire, Durham, NH, USA

4 Department of Environmental Sciences, University of Helsinki, Helsinki, Finland

5 Department of Geology, Quaternary Sciences, Lund University, Lund, Sweden

Overview

- 1. Introduction
 - Paleoclimate of the late Deglaciation
- 2. Paleo lake records
- 3. Climate model simulations
- 4. Paleo-lake modeling
- 5. Discussion

1. Introduction

Abrupt climate shifts during the late Deglaciation

Transient simulation of deglaciation + Holocene

TraCE simulation (AOGCM = CCSM3)

- deglaciation through gradual
 increase in summer insolation
- ice instabilities and meltwaterpulses trigger non-linear responses
- North Atlantic: **AMOC slowdown**
- rapid shifts of Bølling-Allerød and Younger Dryas

Atlantic Meridional Overturning Circulation

Atlantic Meridional Overturning (max 0-75°N, > 500 m)

18
17
16
15
14
13
12
11
10
9
8
7

AMOC —10a AMOC —100a AMOC

A collaboration between Stockholm University, KTH and the Swedish Meteorological and Hydrological Institute

Boundary conditions

1) Topography & Ice Sheets
GLAC1b by Lev Tarasov

2) SST and sea-ice fraction
TraCE (CCSM3, He 2011)

A collaboration between Stockholm University, KTH and the Swedish Meteorological and Hydrological Institute

Research Questions

- Problem 1: Climate simulations
 - cold ocean = cold summers (CCSM3)
 - cold ocean = warm summers (CESM1)
 - Which ΔT_{summer} fits to $\Delta AMOC$?
 - Is ∆AMOC the only forcing behind rapid shifts?

2. Paleo-lake records

Some examples...

Lake temperature compilation for T_{July} (N=150)

Group 1:

- chironomids (N=28)
- coleoptera (N=4)
- cladocera (N=1)

Wikimedia, chironomus plumosus

Group 2:

- climate indicator plant species
- aquatic pollen & plant macrofossils (N=101)
- trees (N=16)
- temperature estimates according to Väliranta et al. (2015)

Lake records T_{July}: chironomids vs. plants

Research Questions

- Problem 1: Climate simulations
 - cold ocean = cold summers (CCSM3)
 - cold ocean = warm summers (CESM1)
 - Which ΔT_{summer} fits to $\Delta AMOC$?
 - Is ∆AMOC the only forcing behind rapid shifts?
- Problem 2: Proxy data for T_{July}
 - aquatic pollen & plant macrofossils = warm summers
 - Chironomids = cold summers (W-E gradient)
 - Hypothesis: water temperatures diverge from air temperatures due to extreme ∆seasonality
- Solution(?): Paleo-lake modeling of ∆seasonality
 - Hypothesis: △AMOC → ∆seasonality?

3. Climate model simulations

Use the Community Earth System Model 1 to create lake model forcing data

CESM1 simulations for 12kyr vs. 13kyr

earth • modeling • climate

Model version	CESM 1.0.5
Component set	F_1850 (CAM4/CLM4/CICE/DOCN)
Resolution	0.9° x 1.25° horizontal, 26 vertical levels, finite volume
Topography	GLAC2 (Tarasov et al., in prep), added on USGS GTOPO30 ICE-5G (Peltier 2004), ICE-6G (Peltier et al., 2014)
Forcing	prescribed SST/Ice fraction from TraCE (Liu et al., 2009; He 2011)
	orbital and GHG according to PMIP protocol

Model is available under http://www.cesm.ucar.edu/models/cesm1.0/

ΔT summer response = $\Delta seasonality$?

ΔT summer response [K] of YD-BA

ΔT summer response [K] of YD-BA

4. Paleo-lake modeling

Linking climate with lake temperatures

FLake and PROBE

- FLAKE (0-D bulk model)
- Mironov (2008)
- two-layer parametrisation
- concept of self-similarity for vertical profile
- validated for shallow lakes
- stand-alone version used here
- forcing by CESM1 output

- PROBE (1D-model)
- Sahlberg (1983, 1988, 2003)
- dynamic eddy viscosity
 calculated by a two equation
 turbulence model, k-ε model &
 the hypolimnic eddy diffusivity
 formulation which is a function
 of the stability frequency.
- validation for shallow lakes unclear (?)

Forcing for lake model (Mironov 2008)

- parameters: lk_depth=5, extinction_coeff=0.3 [1/m] (transparent), lat = 56 °N
- initial conditions: upper mixed layer = bottom = 4°C, mixed layer thickness = 3 m
- timestep= daily mean (or 3 hours)
- net radiation at lake surface = FSDS [W/m²] downwelling SR radiation at surface
- near surface temperature T_a [°C] = TREFHT, set z=2 m
- wind speed **U10** [m/s], set z=10 m
- cloudiness CLDTOT [%], set low cloud -1 (missing), z=2 m
- air humidity [mb] $E_v = E_s * RH/100$ with
 - $\frac{dEs}{dT} = \frac{Qv}{Rv} \frac{Es}{T^2} \left[\text{hPa/K} \right] \rightarrow Es = E0 \cdot e^{\left(\frac{Qv}{Rv}\left(\frac{1}{T_0} \frac{1}{T}\right)\right)} \left[\text{hPa} \right]$
 - assume $Q_v = const$, solve with August-Roche-Magnus
 - RH = relative humidity [%], T = TREFHT [K]

Change in seasonality

ΔT cycle NW-Europe

Cloud cover & short wave radiation

Aforcing

ΔT cycle NW-Europe

Hässeldala simulation

A collaboration between Stockholm University, KTH and the Swedish Meteorological and Hydrological Institute

Hässeldala during the Younger Dryas

5. Discussion

Lake model comparison & Role of stratification/depth for ΔT

Comparison FLake vs. PROBE for Ts

Comparison FLake vs. PROBE for Ts

The role of stratification (small lakes)

Larsen & MacDonald (1993): $Z_{critical}$ [m] = 3.85 x $A^{0.257}$ [ha]

The role of stratification (ΔT_{Summer})

&LAKE_PARAMS
depth_w_lk = 5
fetch_lk = 4.0E+03
sediments_on = .TRUE.
depth_bs_lk = 5.0
T_bs_lk = 1.79
latitude_lk = 55.0

extincoef_optic = 0.3

Implications for ∆lake conditions

- PROBE: longer ice season, rapid warming, 3-5 K warmer
 → very short growing seasons but warmer summers
- FLake: ~2 weeks longer ice cover, small ∆T_{summer}
 → no stratification yields better agreement with proxies
 - YD FLake
 YD PROBE
 BA FLake
 BA PROBE
 delta FLake
 delta PROBE
 -40 -20 0 20 40 60 80 100

Growing Season Length (GSL, days)

Conclusion

H₀: Younger Dryas consistent with ΔΑΜΟC-only

- Lake model confirms: proxy data from lakes for T_{July}
 - cold anomalies (chironomids) = cold spring / Δ seasonality
 - warm summers (plant indicators) ~ CESM1 = air temperature
- Large uncertainties → lake model dependent
 - stratification/depth sensitivity
 - ice season length
 - meta information for paleo lakes needed
 - multi-model ensemble needed

