Lakes 17

5th Workshop on Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling

Berlim, Germany, October 16 – 19, 2017

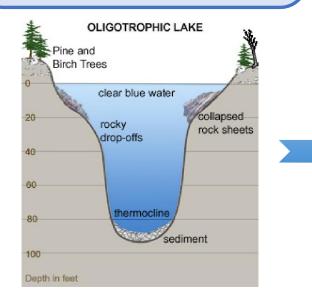
Biological and Physico-Chemical profiles of a large reservoir (Alqueva, Southern Portugal)

Alexandra Penha,

with Helena Novais, Miguel Potes, Manuela Morais, Rui Salgado

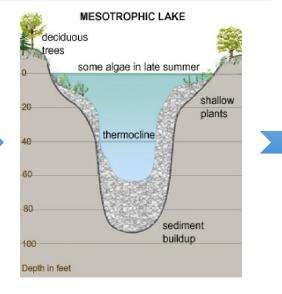
18th October 2017

Outline

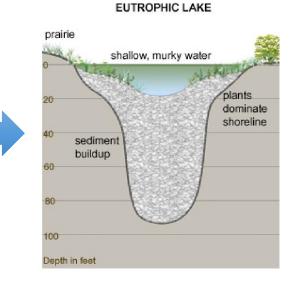

- ✓ Lake classification: Trophic state and mixing patterns
- ✓ The Alqueva reservoir
- ✓ ALEX Project
- ✓ ALOP Project
- ✓ Final remarks and next steps

Lake types

Carlson's Index: based on its trophic status: phosphorus and nitrogen


Oligotrophic

- Low nutrients (P&N)
- Low algal concentration
- Less decomposition
- Clear water
- Highly oxygenated waters


Mesotrophic

- Intermediate level of productivity
- Stratification
- Oxygen concentration high at the surface, bottom layer anoxic during summer

Eutrophic

- High nutrient levels
- High primary production
- Murky, green water
- Usually shallow
- Lots of plants and algae

Carlson's Index: based on its trophic status: phosphorus and nitrogen

Cyanobacteria are an important group of algae often appearing a dominant part of the phytoplankton of lakes and reservoirs. They tend to form a **dense bloom rising to the surface**.

Lake types

Lake types

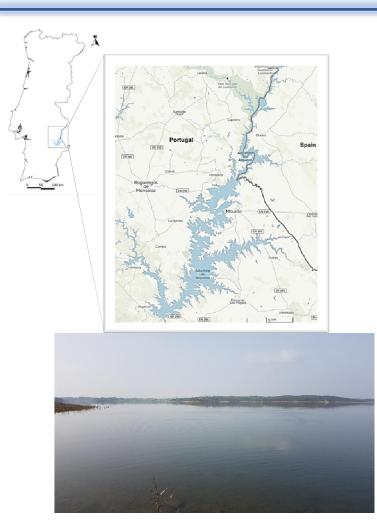
Classification by mixing patterns

Meromictic lake:

Lakes that have layers of water that do not intermix.

Amictic lake:

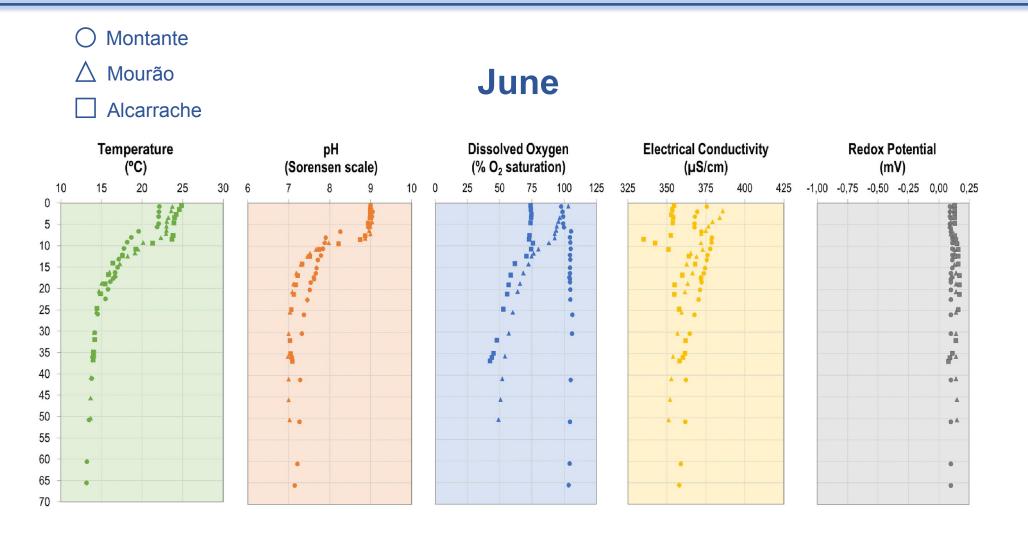
Lakes that are permanently covered by ice. Glacial lakes. Exhibit inverse cold water stratification.

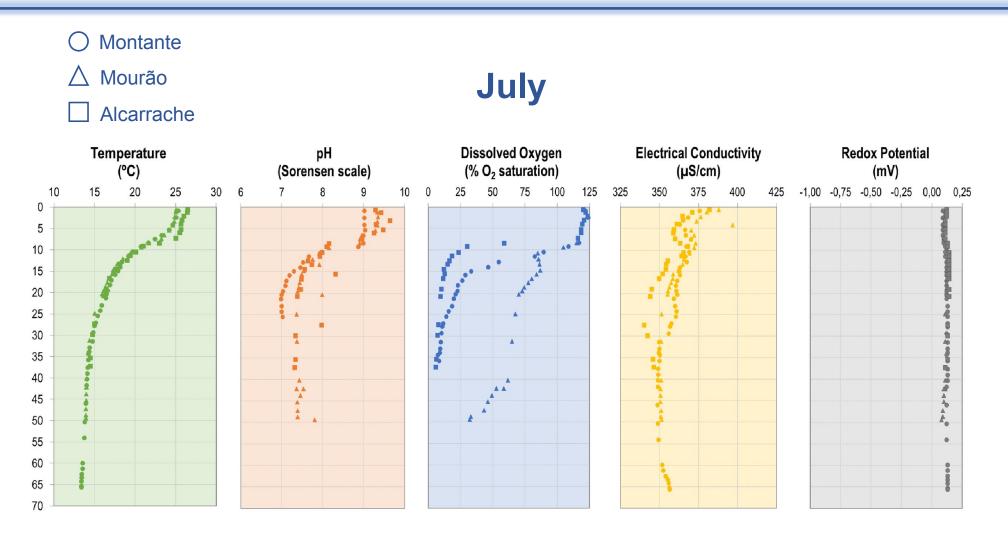

Holomictic lakes:

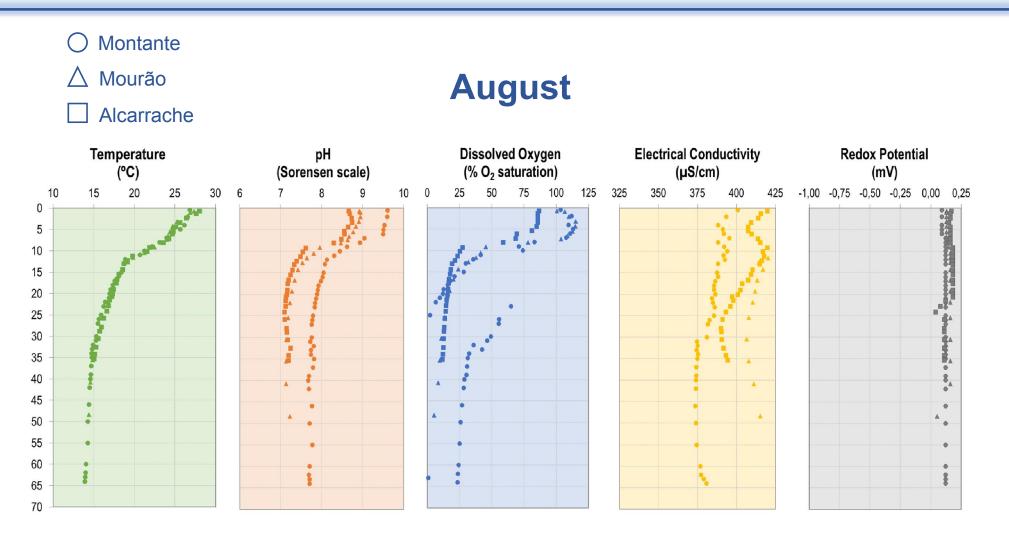
Lakes that have a uniform temperature and density from top to bottom at a specific time

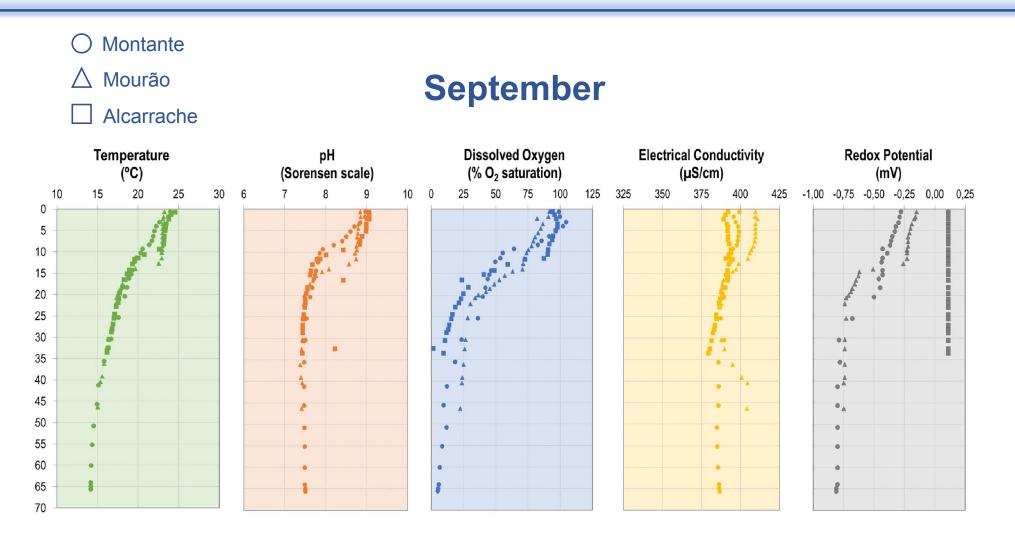
during the year, which allows the lake waters to completely mix.

Alqueva reservoir

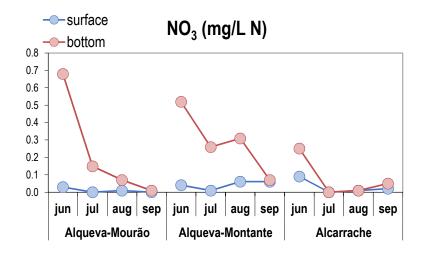


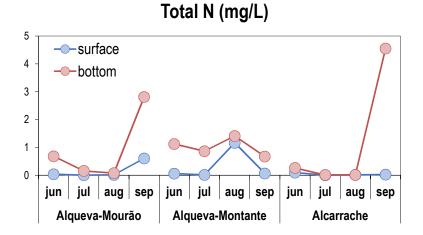

- Located in the water course of Guadiana river;
- Closure of floodgates on <u>8 February 2002;</u>
- Largest artificial water reservoir in Western Europe, also called the Great Lake;
- Built with the objective of irrigation for the entire Alentejo area and production of electricity, in addition to other complementary activities;
- Classification in terms of trophic state: <u>Mesotrophic</u>;
- Classification in terms of circulation: <u>Warm monomictic</u>
- Ecological Potential: Good


ALEX: ALQUEVA hydro-meteorlogical Experiment 2014



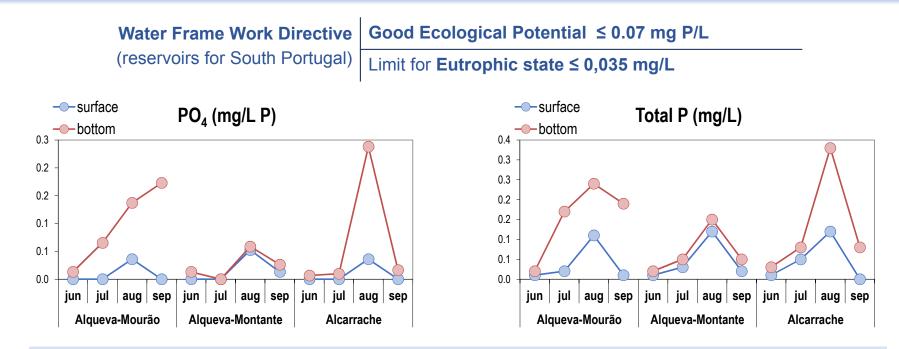
Sampling period	From June to September 2014	
Sampling sites	Alqueva-Montante	
	Alcarrache	
	Alqueva-Mourão	
In situ parameters	Temperature (°C)	
	pH (Sorensen scale)	
	Dissolved Oxygen (% O ₂ saturation)	
	Electrical Conductivity (µS/cm)	
	Redox Potential (mV)	
Chemicall	Nitrates (mg/L NO3-N)	
parameters	Total Nitrogen (mg/L N)	
	Phosphates (mg/L PO4-P)	
	Total Phosphorus (mg/L P)	
Biological parameters	Water samples at different depth for Phytoplancton identification and quantification	





Chemical parameters - Nitrogen

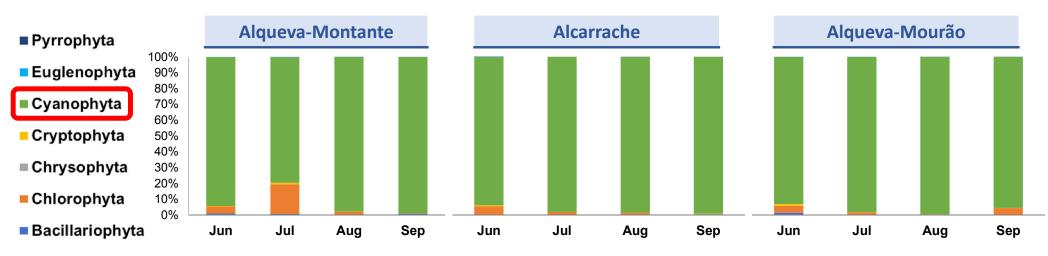
Water Frame Work Directive
(reservoirs for South Portugal)Good Ecological Potential $\leq 25 \text{ mg NO}_3/L$



- Bottom levels generally higher than surface levels;
- Decrease of NO₃ at the bottom over time, at all sampling sites.

Bottom levels higher than surface levels in June and September at all sampling sites.

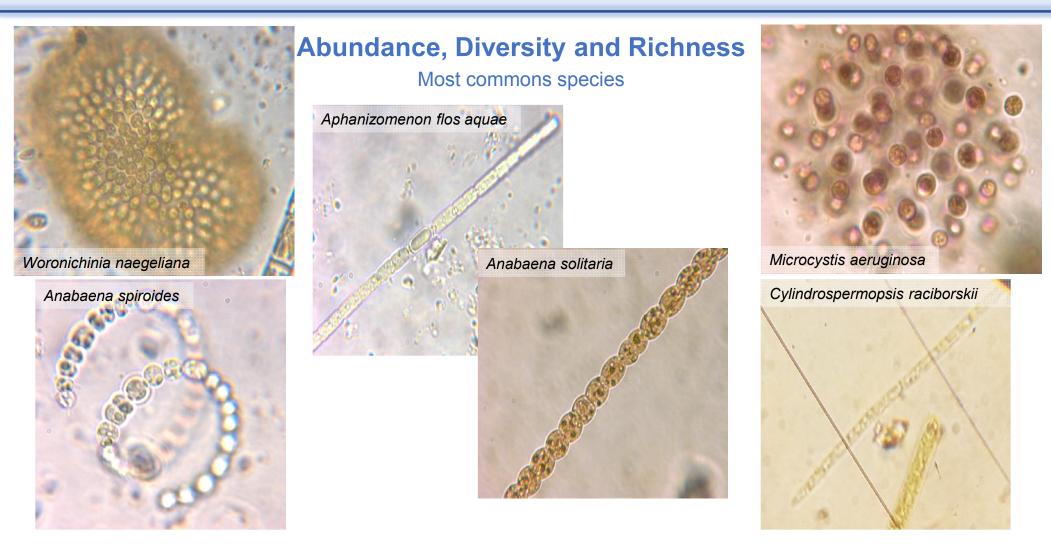
Chemical parameters - Phosphorus



<u>PO₄ and Total P</u>:

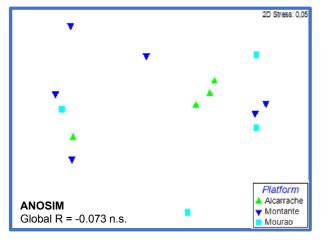
- > Bottom levels higher than surface levels, with an increase over time, at Alqueva-Mourão;
- > Alqueva-Montante with no difference between surface and bottom levels;
- > **PO₄ peak** at **Alcarrache** in **August**.

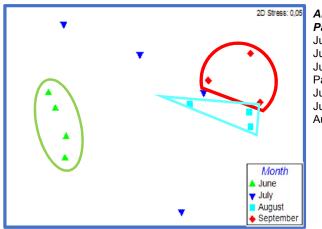
Biological parameter - Phytoplankton


Abundance, Diversity and Richness

Succession of phytoplankton species, mainly cyanobacteria, thus representing a temporal dynamics, typical of reservoirs that are not under the influence of severe anthropogenic pressure;

Cyanobacteria dominated in abundance throughout the experiment, whilst Chlorophyta were the taxa richest group.


Biological parameter - Phytoplankton


Biological parameter - Phytoplankton

Integrated samples (representing the euphotic zone)

Multidimensional Scaling (MDS)

> No differences between platforms

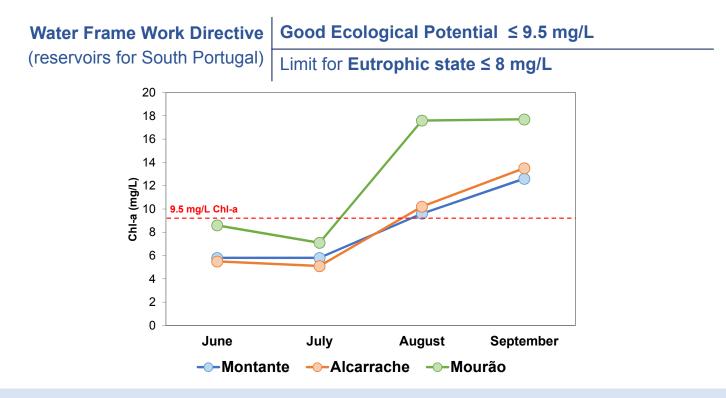
ANOSIM Pairwise Tests R Jun/Jul=0.563* Jun/Aug=1.000* Jun/Sep=1.000* Pairwise Tests R Jul/Aug=0.111 n.s. Jul/Sep=0.286 n.s. Aug/Sep=0.000 n.s.

nMDS ordination shows a clear separation of phytoplankton assemblages in relation with sampling campaigns.

Multidimensional Scaling (MDS)

Biological parameter - Phytoplankton

Samples at discrete depths


2D Stress: 0,11 2D Stress: 0,11 2D Stress: 0,1 Month Platform Depth Montante August Surface September Alcarrache **7**5 Mourao 2.5♦ 10● 20 + 30 × 50 ۸ X • . Pairwise Test R Mont/Alc=0.236* ANOSIM ANOSIM ANOSIM Mont/Mou=0.247* Global R = 0.161* Alc/Mou=0.074 n.s. Global R = 0.537*** Global R = 0.09 n.s.

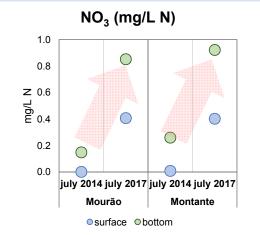
 Clear separation between sampling campaigns;

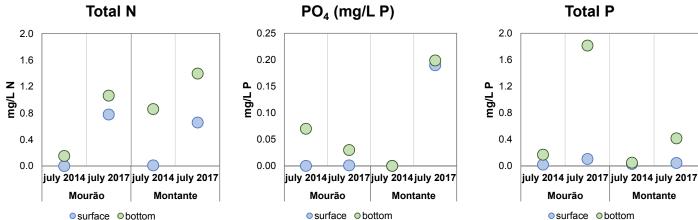
- No differences between platforms;
- > No differences between depths;

	Со	Correlations (Phytoplankton with in situ parameters and depth				
	Marked correlat	Marked correlations are significant at p<0.05				
	N=28 (Casewise	N=28 (Casewise deletion of missing data)				
	рН	Temp. (°C)	Dissolved O ₂ (%O2sat)	EC (µs/cm))	ORP (Volts)	Depth (m)
Н	-0.33	-0.33	-0.34	-0.20	-0.05	0.46
Richness	0.48	0.65	0.48	0.37	0.47	-0.54

Chlorophyll-a over time

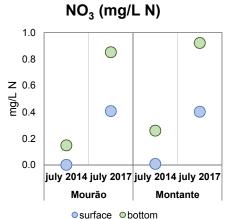
- > In August and September, Chlorophyll levels higher than 9.5 mg/L at all sampling sites;
- > Mourão with the highest values.

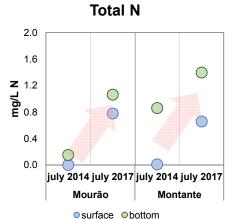

ALOP: ALOP: ALentejo Observation and Prediction systems

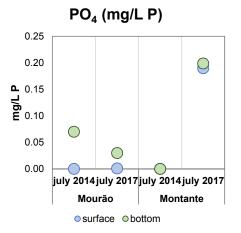

Sampling period	From January 2017 to December 2018	
Sampling sites	Lucefécit	
	Alqueva-Mourão	
	Álamos	
	Alqueva-Montante	
In situ parameters	Temperature (°C)	
	pH (Sorensen scale)	
	Dissolved Oxygen (% O ₂ saturation)	
	Electrical Conductivity (µS/cm)	
	Redox Potential (mV)	
	Turbidity (NTU)	
Chemicall parameters	Nitrates (mg/L NO3-N), Total Nitrogen (mg/L N), Phosphates (mg/L PO4-P), Total Phosphorus (mg/L P), among others	
Biological parameters	Identification and quantification of Phytoplankton, Diatoms and photosynthetic pigments at discrete depths	

How is Alqueva reservoir in 2017 compared with 2014

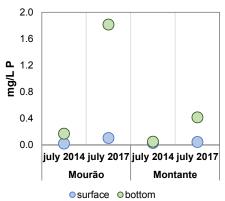
- > Two common sampling sites: Alqueva-Montante and Alqueva-Mourão
- Same sampling month: July

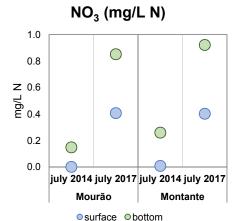


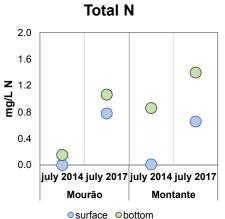

	Mourão	Montante
2014 surf vs. bottom	Bottom	Bottom
2017 surf vs. bottom	Bottom	Bottom
Surface 2014 vs. 2017	2017 777	2017 77
Bottom 2014 vs. 2017	2017	2017 7

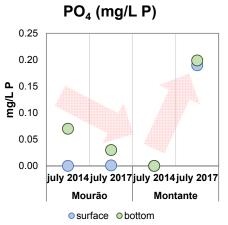


How is Alqueva reservoir in 2017 compared with 2014

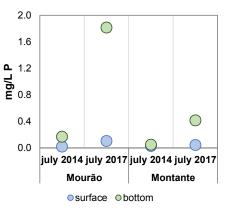

- > Two common sampling sites: Alqueva-Montante and Alqueva-Mourão
- Same sampling month: July


Total P

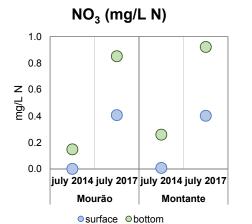


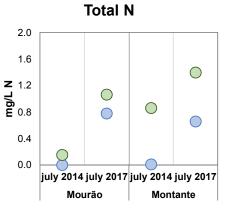

	Mourão	Montante	Mourão	Montante
2014 surf vs. bottom	Bottom	Bottom	Bottom	Bottom
2017 surf vs. bottom	Bottom	Bottom	Bottom	Bottom
Surface 2014 vs. 2017	2017 777	2017 77	2017 777	2017 77
Bottom 2014 vs. 2017	2017	2017	2017	2017

How is Alqueva reservoir in 2017 compared with 2014

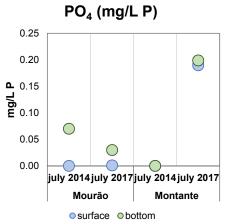

- > Two common sampling sites: Alqueva-Montante and Alqueva-Mourão
- Same sampling month: July

Total P

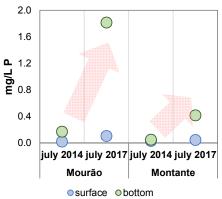

	Mourão	Montante	
2014 surf vs. bottom	Bottom	Bottom	
2017 surf vs. bottom	Bottom	Bottom	
Surface 2014 vs. 2017	2017 777	2017 77	
Bottom 2014 vs. 2017	2017	2017	


Mourão	Montante
Bottom	Bottom
Bottom	Bottom
2017	2017 77
2017	2017

Mourão	Montante
Bottom	No difference
Bottom	Bottom
No difference	2017 777
Bottom	2017 777


How is Alqueva reservoir in 2017 compared with 2014

- > Two common sampling sites: Alqueva-Montante and Alqueva-Mourão
- Same sampling month: July



●surface ●bottom

	Mourão	Montante	
2014 surf vs. bottom	Bottom	Bottom	
2017 surf vs. bottom	Bottom	Bottom	
Surface 2014 vs. 2017	2017 777	2017 77	
Bottom 2014 vs. 2017	2017	2017 7	

Mourão	Montante
Bottom	Bottom
Bottom	Bottom
2017 オオオ	2017 オオ
2017	2017

Mourão	Montante
Bottom	No difference
Bottom	Bottom
No difference	2017 777
Bottom	2017 777

Mourão	Montante
Bottom	Bottom
Bottom	Bottom
2017	2017
2017 77	2017

Summary

- Vertical profiles of water temperature, pH, dissolved oxygen, electrical conductivity and oxidation-reduction potential, are similar on the 3 platforms, and show a temporal evolution;
 Low values of Nitrates, Total Nitrogen, Phosphates and Total Phosphorus in the 3 platforms and during the whole campaign, higher in bottom samples, thus reflecting the low contribution of external loads to the system; Although for the same month 3 years later, some of the parameters are higher, indicating that the system is running towards eutrophication;
- Cyanobacteria dominated in abundance throughout the experiment, whilst Chlorophyta was the taxa richest group. There were no differences in Phytoplankton between platforms neither depths;
- Because of these, taking into account the size of the reservoir, its dynamics is basically similar.

Because the biological parameters are highly correlated with *in situ* parameters, such as pH, dissolved oxygen, redox potential, it would be important to predict not only the temperature but also the other parameters, i.e., the similarity approach of FLake may be extended to model other parameters related to water quality.

Thank you for your attention!!