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Carbon cycle in inland waters
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Linking Carbon cycle and Physical processes

Carbon cycle Physical processes
“os % Net CO, uptake !
- |
P Z4\" | Heat exchange
CO,and CH; |

Air-water interface )

A Mixed layer ﬂ Transport

Outflow -y Pprocesses

Thermocline

Hypolimnion w

Sediment-water interface



Lake-SMEAR (Kuivajarvi, Finland)

ICOS Ecosystem Associated
Station.

Required measurements for a
lake super-site:

- Water T at several depths

-  Water CO, at several depths

-  Water PAR at several depths

- Net radiation components

- AirTand RH

- Turbulent fluxes by EC

- Accurate CO, concentration in
the air




Lake-forest-wetland comparison (CO, and CH,)
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Global synthesis of EC CO, fluxes
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Global CO, emission from lakes/reservoirs
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Gas transfer velocity at air-water
interface

Transfer
Velocity

e Flux F=k AC;

 (Concentration Difference:
AC=C,-C,;

» C, surface concentration
determined from gas
phase measurements and
Henry’'s Law (assuming
equilibrium)




Models for k

Empirical or semi-empirical models
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Models for k

Small eddy model
(Lamont and Scott, 1970)

k= (¢ v)¥2 Sc™

¢ = water-side mean turbulent

kinetic energy (TKE) dissipation v .
rate t
v = kinematic viscosity of water Katul and Liu (2017)

B =empirical constant

n = exponent varying between 2/3
and 1/2
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Similarity scaling based k model
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Lake size influences lake-atm interactions

2-
Kuivajarvi—

Heat flux influences the gas

exchange more in small lakes than

in large.

Lakes are typically surrounded by
vegetation which reduces the
effective fetch.
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Figure 1. Ratio between the temporally-averaged velocity
scales for wind shear (x") and convection (w"), where
averages were applied over the entire time series of observa-
tions for each lake. Lake shapes were used for plot symbols,
and were shifted when overlapping (see tip of arrows).

Read et al. 2012



Lake-SMEAR (Kuivajarvi, Finland)

Campaign setup
(11-27.09.2014)

- Water T at several depths

- pCO, and pCH, at several
depths

-  Water PAR at several depths

- Net radiation components

- AirTand RH

- EC fluxes (Heat, CO,, CH,)

- Floating chamber fluxes

- Water current velocities and
turbulence
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Erkkila et al., 2017, BGD



Water turbulence measurements

* Acoustic Doppler Velocimeter Field
Vectrino from Nortek

* Depth =20 cm
« Sampling frequency 30 Hz

« Measuring turbulent current
velocity fluctuations (u, v, w)
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Kk comparison campaign in 2014 at Lake-SMEAR
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New gas transfer velocities and implications
for global upscaling of CO, fluxes

kee =2.07 +0.215U;7,

Flux Tg yr-1
Ky = (CLU)2+(Cow.)2Sc™/?
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= (2013) U = wind speed
wH —

| Sc = Schmidt Number
B w. = convective velocity scale
= = ¢ =water-side mean TKE dissipation rate

kCC kHE kTE

v = kinematic viscosity of water
Cole and Caraco(1998) Heiskanen et al.(2014) Tedford et al.(2014)
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Conclusions and outlook

* Measured k and new k models are in agreement with k obtained
from direct water turbulence measurements (via small eddy model).

New k models have large impact on global upscaled CO2 flux.

More flux stations (Freshwater super-sites, different types of lake

across latitudes).
FLUXNET <--> ICOS-RI <-->GLEON<-->DANUBIUS-RI <--> PEEX

« Better methods for integrating aquatic and terrestrial carbon
balances (lateral fluxes via coupling catchment model with lake

model).
?

* Introduce lacustrine CH, and CO, dynamics into land surface
scheme of Earth System Models.
Victor Stepanenko presentation
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