In-situ evaluation of the relationship between lake surface turbulence and air-water gas transfer velocity at a small lake in Finland

<u>Ivan Mammarella</u>¹, Aki Vähä¹, Kukka-Maaria Erkkilä¹, Ville Kasurinen, Jouni Heiskanen¹, Anne Ojala^{1,2}, Mitta Rantakari², Timo Vesala^{1,3}, and Gaby Katul^{4,5}

¹Department of Physics, University of Helsinki, Finland

²Department of Environmental Sciences, University of Helsinki, Finland

³Department of Forest Sciences, University of Helsinki, Finland

⁴Nicholas School of the Environment, Duke University, Durham, USA

⁵Department of Civil and Environmental Engineering, Duke University, Durham, USA

Carbon cycle in inland waters

From Benoy et al. 2007

Linking Carbon cycle and Physical processes

Lake-SMEAR (Kuivajärvi, Finland)

ICOS Ecosystem Associated Station.

Required measurements for a lake super-site:

- Water T at several depths
- Water CO₂ at several depths
- Water PAR at several depths
- Net radiation components
- Air T and RH
- Turbulent fluxes by EC
- Accurate CO₂ concentration in the air

Lake-forest-wetland comparison (CO₂ and CH₄)

	Kuivajärvi (Lake)	SMEAR II (Scots Pine Forest)	Siikaneva (Wetland)
CO2	+116	-280	-51
CH4	0.2	NA	10

Annual budget (gC m⁻²) comparison (June 2012–June 2013)

Global synthesis of EC CO₂ fluxes

Temporal patterns of NEE from 20 lakes and reservoirs from six climatic zones.

Global CO₂ emission from lakes/reservoirs

Gas transfer velocity at air-water interface

Transfer Velocity

- Flux $F = k \triangle C$;
- Concentration Difference:
 ∆C = C_b C_s;
- C_s surface concentration determined from gas phase measurements and Henry's Law (assuming equilibrium)

Models for k

Empirical or semi-empirical models

$$k_{\rm cc} = 2.07 + 0.215 U_{10}^{1.7},$$

Cole and Caraco (1998)

$$k_{\text{HE}} = \sqrt{(C_1 U)^2 + (C_2 w_*)^2} Sc^{-\frac{1}{2}},$$

- C₁ and C₂ are empirical constants
- Sc = Schmidt Number
- w_{*} = convective velocity scale

Heiskanen et al. (2014)

Models for k

Small eddy model (Lamont and Scott, 1970)

$$k = \beta (\epsilon v)^{0.25} Sc^{-n}$$

ε = water-side mean turbulent kinetic energy (TKE) dissipation rate

v = kinematic viscosity of water

 $\beta = \text{empirical constant}$

n = exponent varying between 2/3 and 1/2

Katul and Liu (2017)

Similarity scaling based k model

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE 10.1002/2014JC010135 Similarity scaling of turbulence in a temperate lake during fall cooling

Key Points:

Edmund W. Tedford^{1,2}, Sally MacIntyre^{1,3}, Scott D. Miller⁴, and Matthew J. Czikowsky⁴

Tedford et al. (2014)

$$\varepsilon_{TE} = \begin{cases} \frac{c_1 u_{*w}^3}{\kappa z} + c_2 |\beta| & \text{if } \beta < 0, \\ \frac{c_3 u_{*w}^3}{\kappa z} & \text{if } \beta \ge 0 \end{cases}$$

 β = buoyancy flux

u_{*w} = water-side friction velocity

Lake size influences lake-atm interactions

Kuivajärvi

Heat flux influences the gas exchange more in small lakes than in large.

Lakes are typically surrounded by vegetation which reduces the effective fetch.

Figure 1. Ratio between the temporally-averaged velocity scales for wind shear (u^*) and convection (w^*) , where averages were applied over the entire time series of observations for each lake. Lake shapes were used for plot symbols, and were shifted when overlapping (see tip of arrows).

Lake-SMEAR (Kuivajärvi, Finland)

Campaign setup (11-27.09.2014)

- Water T at several depths
- pCO₂ and pCH₄ at several depths
- Water PAR at several depths
- Net radiation components
- Air T and RH
- EC fluxes (Heat, CO₂, CH₄)
- Floating chamber fluxes
- Water current velocities and turbulence

Water turbulence measurements

- Acoustic Doppler Velocimeter Field Vectrino from Nortek
- Depth = 20 cm
- Sampling frequency 30 Hz
- Measuring turbulent current velocity fluctuations (u, v, w)

Environmental conditions

Environmental conditions

k comparison campaign in 2014 at Lake-SMEAR

$$k = \beta (\epsilon v)^{0.25} Sc^{-n}$$

versus

•
$$k_m = Flux / (Caq-Ceq)$$
 [A]

•
$$k_{cc} = 2.07 + 0.215U_{10}^{1.7}$$
, [B]

•
$$K_{HE} = \sqrt{(C_1 U)^2 + (C_2 w_*)^2} Sc^{-1/2}$$
 [C]

New gas transfer velocities and implications for global upscaling of CO₂ fluxes

$$k_{\rm cc} = 2.07 + 0.215U_{10}^{1.7},$$

$$K_{HE} = \sqrt{(C_1 U)^2 + (C_2 W_*)^2} Sc^{-1/2}$$

$$k_{TF} = C_3 (\varepsilon v)^{0.25} Sc^{-1/2}$$

U = wind speed

Sc = Schmidt Number

w_{*} = convective velocity scale

 ε =water-side mean TKE dissipation rate

v = kinematic viscosity of water

Conclusions and outlook

- Measured k and new k models are in agreement with k obtained from direct water turbulence measurements (via small eddy model).
- New k models have large impact on global upscaled CO2 flux.
- More flux stations (Freshwater super-sites, different types of lake across latitudes).

FLUXNET <--> ICOS-RI <-->GLEON<-->DANUBIUS-RI <--> PEEX

 Better methods for integrating aquatic and terrestrial carbon balances (lateral fluxes via coupling catchment model with lake model).

?

 Introduce lacustrine CH₄ and CO₂ dynamics into land surface scheme of Earth System Models.

Victor Stepanenko presentation

