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Modelling Lakes in Weather and Climate Systems

• Importance of surface water for weather and climate well established

• Canada has fallen behind some countries in terms of modelling this

Rationale for the Canadian Small Lake Model

• Develop a single modelling system for individual lake process studies 
and regional scale hydrolimnology for use in NWP and climate prediction 

• May be slightly overkill for global modelling since many included physical
processes may not be relevant on global scales 

• But we are a small country so there is appeal in developing deeper expertise
in a smaller number of models
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Na≥A

Lake Size Number Total Area

0.001- 1 km2 19.5 x106 161000 (24 %)

1-10 km2 27800 73000 (11%)

10-100 km2 3300 86000 (13%)

100- 100000 km2 400 356000 (52%)

1 km2 land surface dataset

Lake Size Distribution

Na≥A = αAβ

pdf(a) = αβaβ-1

β = -0.9309



• thermal model computes surface energy balance and
light attenuation through column

surface energy balance

light attenuation

T0

Canadian Small Lake Model
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diurnal mixed layer

metalimnion

z=0

z=h

• wind stress forces current in diurnal mixed layer until 
¼ period of fundamental internal seiche (Spigel and Imberger, 1980)
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Canadian Small Lake Model

diurnal mixed layer
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• An integrated TKE model based on Rayner (1980), Imberger (1985) and Spigel et al. (1986)
(following tradition of Kraus and Turner, 1967)



• both surface energy balance and mixed layer depth 
affect surface temperature

Canadian Small Lake Model

• well know sources/sinks of turbulent kinetic energy
govern depth of mixed layer

diurnal mixed layer
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• An integrated TKE model based on Rayner (1980), Imberger (1985) and Spigel et al. (1986)
(following tradition of Kraus and Turner, 1967)
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Canadian Small Lake Model

diurnal mixed layer
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• An integrated TKE model based on Rayner (1980), Imberger (1985) and Spigel et al. (1986)
(following tradition of Kraus and Turner, 1967)



Canadian Small Lake Model
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• An integrated TKE model based on Rayner (1980), Imberger (1985) and Spigel et al. (1986)
(following tradition of Kraus and Turner, 1967)



(MacKay et al. 2017, J. Hydromet.)

Canadian Small Lake Model: 
Ice and Snow

• Snow physics from Canadian Land Surface Scheme (CLASS)



Canadian Small Lake Model: 
Ice and Snow

• Snow-ice scheme described in MacKay et al. (2017)

(MacKay et al. 2017, J. Hydromet.)



Canadian Small Lake Model: 
Ice and Snow

• Both patchy snow cover and fractional ice cover permitted

ice

snow

water

L

Hlim = 10-5 L (Leppäranta and Wang, 2008)

Hlim = 10 cm (Verseghy, 2016)

(MacKay et al. 2017, J. Hydromet.)
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Lake 239:  17 July 2013 – 27 May 2014 
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Lake 239:  17 July – 5 Nov, 2013
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Lake 239:  17 July – 5 Nov, 2013
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Lake 239:  17 Sep – 6 Dec, 2013

Autumn Processes
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Lake 239:  30 Oct – 16 Dec, 2013

Autumn Processes

Wintertime Processes
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Lake 239:  19 Jul, 2013 – 27 May, 2014

Winter Processes
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Lake 239:  16 Nov, 2013 – 20 May, 2014

Winter Processes
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≈ -2.8 Wm-2
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Lake 239:  31 Mar – 20 May, 2014

Ice-off
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Regional Scale Simulations:   Uncoupled Runs

• CSLM run on a 0.25o horizontal resolution grid over western Canada.

• Atmospheric forcing: ERA-Interim reanalysis downscaled with 
Canadian Regional Climate Model (CRCM5).

• 1990 – 2011 simulation.

Fig. 2. Fractional coverage of subgrid-scale lakes 
on the model domain.

Fig. 6. Locations of tundra, boreal, and southern 
ecozones used for averaging of surface fields.
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Verseghy and MacKay, 2017



Regional Scale Simulations:   Uncoupled Runs

• Shortwave extinction: 0.5 m-1 (also 2.0 m-1)

• Lake depth: Kourzeneva, 2010 or default 10.0 m (also 5.0 m, 50.0 m)

• Initial conditions: 4 oC (isothermal); 1 year spinup.

• Simulated precipitation scaled by monthly gridded observed product 
(CANGRD) – details in Verseghy and MacKay, 2017

• Validation data:    ARC-Lake (temperature, ice cover)
MODIS (surface albedo)

Verseghy and MacKay, 2017



Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Albedo   (2000 – 2010)

Simulated albedo                             April
BIAS
No Lakes           Lakes

Tundra

Boreal

Southern 

-0.06 -0.03

-0.06 -0.05

+0.08 +0.08



Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Simulated albedo                             August
BIAS
No Lakes           Lakes

Tundra

Boreal

Southern 

+0.03 +0.02

+0.16 +0.14

+0.02 +0.02

Albedo   (2000 – 2010)



Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Ice Cover   (1995 – 2011)
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Ice Cover   (1995 – 2011)
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Ice Cover   (1995 – 2011)
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Ice Cover   (1995 – 2011)

Ice melts too soon
Consistent with warm simulated air temp bias

Ice forms too soon
Consistent with cold simulated air temp bias



Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Surface Temperature   (1995 – 2011)

July
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Surface Temperature   (1995 – 2011)
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Surface Temperature   (1995 – 2011)
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Regional Scale Simulations:   Uncoupled Runs

Verseghy and MacKay, 2017

Surface Temperature   (1995 – 2011)



CONCLUSIONS

We have developed a stand-alone 1-D thermodynamic lake model incorporating:

• an integrated TKE surface (diurnal) mixed layer model

• the complete snow physics package from the Canadian Land Surface Scheme

• ice physics that include snow-ice production and fractional ice cover

Performance in standalone and uncoupled regional scale tests suggest that this
model is suitable for inclusion in NWP and climate prediction systems

• Model code has been implemented into the Canadian Earth System Model
(CanESM) in preparation for CMIP6

• Model code is currently being implemented into the Canadian forecasting 
system GEM, as well as the Canadian Land Data Assimilation System CaLDAS.

The Canadian Small Lake Model


