

Environmental controls on coloured dissolved organic matter (CDOM) in lakes of Yamal peninsula

Yury Dvornikov¹, Marina Leibman^{1,2}, Birgit Heim³, Annett Bartsch^{4,5,6}, Ulrike Herzschuh³, Artem Khomutov^{1,2}, Barbara Widhalm^{4,5}

¹Earth Cryosphere Institute, Russian Academy of Sciences, Russia

²Tyumen Industrial University, Russia

³Alfred-Wegener-Institute for Polar and Marine Research, Germany

⁴Austrian Polar Research Institute, Austria

⁵Zentralanstalt für Meteorologie und Geodynamik, Austria

⁶Technical University of Vienna, Austria

Motivation

lakes Arctic
change
processes landscapes
instability permafrost
human Climate permafrost
cryogenic impact
disturbances
thermokarst
environment

- CDOM is a optically measurable proxy of commonly used DOC (dissolved organic carbon)
- possibility to apply remote sensing based algorithms to assess CDOM in water objects
- understand the regional processes linked to i.e. permafrost thaw in polar regions
- Arctic lakes are important methane emitters, which should be considered in Earth System Models

Key research questions

- What is the CDOM range in Yamal lakes?
- Which environmental parameters do explain the difference in CDOM among lakes?
- How the cryogenic processes may influence the CDOM concentration of lakes?

Coloured Dissolved Organic matter (CDOM)

In-situ and remote sensing based CDOM

Ref(green) и Ref(red) – reflectance values of green and red bands of GeoEye-1 2013-07-05 (DGF©) satellite image

Key site: Central Yamal

Methods:

Coloured dissolved organic matter

Cryogenic processes

location location lakes catchments

hydrological regime

snow cover

vegetation

Extraction of parameters

TerraSAR-X

TanDEM-XIDEM

SPOT-5

ALOS Palsar

Snow map

Extraction of lake polygons

Catchment delineation, topography analysis

Calculation of vegetation indicies (NDVI, CHLa)

Shrub map

Snow storage for catchments

Statistical analysis of CDOM and lake & catchments parameters

Method – Boosted Regression Tree (BRT) (Elith et al. 2008)

N = 363 lakes and catchments

DA –catchment are / lake area ratio

SWE – the assessed volume of snow water equivalent in catchments (Dvornikov et al. 2015)

LK_WL – absolute height of water level (m. a.s.l)

TC – the presence / absence of thermocirque in the coastal zone of the lake

NDVI – median of the Normalized Difference Vegetation Index in the catchment

Environmental drivers of CDOM

 CDOM concentration change "before" and "after" formation of thrmocirque

Where does the organic matter come from?

Measured DOC concentration – 243 mg/L!

Conclusions

- CDOM concentration might be 3-4 times higher in lakes affected by fresh thermocirques (release of old organic matter previously stored in permafrost)
- Lakes located on a floodplain of rivers receive an additional input of organic matter once the area is inundated
- Based on the remote observation of CDOM and the extraction of environment parameters, the number of environmental drivers of CDOM was found
- It is possible to monitor CDOM (and DOC) in a regional scale using e.g. 10-15 m spatial resolution Sentinel-2 and Landsat-8 data

Acknowledgements:

