

LAND SEA MASK and LAKE COVER

GLOBCOVER (2010, nominal resolution ~300 m) – WATER class

(no separation between ocean and inland water bodies [rivers, lakes, etc.]):

- separate ocean from closed inland water (lakes, rivers not connected to the ocean);
- stop ocean from penetrating deep into land through rivers;

too much inland water in Aral Sea region and Australia!

Water class division:

flooding algorithm (more accurate) to separate ocean from inland water [remaining problem – ocean penetrates too deep into land];

newly developed an automatic pixel-bypixel algorithm separates rivers (lagoon type lakes) and oceans (Kurzeneva E.) –

> *Iteration 0* – for each lake pixel check the window of **W** pixels around; if there are only lak pixels, mark pixel in question with [x], else [●]; *Iteration 1* – for each lake pixel with [●] check the same window; if there is at least one [x], mark pixel in question with [••];

then change [••] to [x] and repeat *Iteration 1*. Number of iterations L is chosen according to the data type and resolution. [x] – true lake pixel

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

[●] – inland water pixel

LAND SEA MASK and LAKE COVER – EXTRA!

GLOBCOVER (2010, nominal resolution ~300 m) -WATER class

(no separation between ocean and inland water bodies [rivers, lakes, etc.]):

- separate ocean from closed inland water (lakes, rivers not connected to the ocean);
- stop ocean from penetrating deep into land through rivers;
- too much inland water in Aral Sea region and Australia!

OPER NEW

MARACAIBO

(25° S, 130° E)

manual intervention for lagoon type lakes strongly minimised;

ARAL SEA (45° N, 60° E)

minimization of Aral sea;

AUSTRALIA (25° S, 130° E)

Australian ephemeral lake removal.

LAKE DEPTH FILE UPGRADE

10 m

Essential qualities:

- global coverage (data over land & ocean);
- realistic depths.

Lake depth:

- **GLDBv1** (2009, in-situ ~13'000)
- bathymetry ETOPO2 [~4 km] (Great lakes, Azov sea, Caspian sea)
- default = 25 m

Ocean: ETOPO2 (2006, ~4 km)

Lake depth:

- **GLDBv3** (2015, in-situ ~14'500)
- indirect estimates derived from geological origin of lakes
- (for 36 LATEST UPDATES, REALISM, bathymetry HIGH-RESOLUTION GLOBAL GOVERAGE,

Ocean: GEBCO (2014, ~1 km) updated with national databases, recent in-situ measurements

Aggregation to a coarser **resolution** (from 1 km) with modified **MODE** algorithm (not AVERAGE).

25 m

VERIFICATION AGAINST IN-SITU OBSERVATIONS

Surface off-line experiments (no feedback of the surface into the atmosphere) with IFS model (CY43R3), horizontal resolution ~25 km (Tco399), ERA5 forcing,

Finnish Environment Institute (SUKE):

- regular in-situ measurements;
- once a day (8.00 local time);
- 20 cm below the water surface, close to lake shore;
- · represent daily minimum;
- only during the ice-free season.

Lake name	Area, km²	In-situ depth, m	Oper depth, m	New depth, m
Pielinen	870.8	10.1	3.9	9.0
Haukivesi	560.4	9.1	2.2	7.0
Nilakka	168.3	4.9	17.0	9.3
Jaasjarvi	81.1	4.6	16.1	8.3
Paijanne	1070.0	14.1	29.6	14.0
Kyyvesi	129.9	4.4	1.0	5.5
Langelmave	133.0	6.8	15.0	7.0
Vaskivesi	46.2	7.0	11.3	7.0
Lappajarvi	145.5	6.9	2.3	7.0
Oulujarvi	928.1	7.0	1.8	7.0
Ounasjarvi	6.9	6.6	3.0	7.0
Unari	29.1	7.0	1.0	7.0
Kevojarvi	1.0	7.0	14.0	7.0

Depth	Experiment name	
oper	gs6m	
new	arit	

01.06.2016-30.06.2017 (with 5 years of spin up). For depth influence analysis SYKE observation timing & locations were used.

Lake surface water temperature (IN-SITU - EXP):

VERIFICATION AGAINST OPERATIONAL ANALYSIS

Forecast experiments, no surface off-line (no spin up of lake variables), with IFS (CY43R3) model, horizontal resolution ~25 km (Tco399), operational analysis, summer (JJA) 2016 with different depths.

CONCLUSIONS AND FUTURE PLANS

Land sea mask and lake cover upgrades:

- ✓ no deep penetration of ocean into land through rivers (using newly developed an automatic pixel-by-pixel algorithm);
- ✓ manual intervention for lagoon type lakes strongly minimised;
- ✓ Aral sea area was updated (using JRC 30 m resolution dataset);
- ✓ Australian inland water distribution was updated (using JRC 30 m resolution dataset + opinion from local meteorological weather service).

Forecast sensitivity experiments have to be done and analysed in modified areas!

Lake depth high-resolution global coverage file with latest available information was created. More forecast sensitivity experiments have to be done!

STILL TO DO:

- ☐ investigation of the Light Extinction Coefficient (second the most important parameter for lake parameterization) impact to the forecast – ongoing job;
- □ collaboration with JRC to produce monthly climatology maps of lake cover (+ forecast sensitivity to lake cover adaptation);
- □ adjust lake mean depth values according to precipitation-evaporation budget.

To achieve these goals lake surface high resolution maps (30 [JRC database] and 300 m, 1 km [Copernicus Waterbody dataset]) will be used.

ALWAYS ONGOING:

- ➤ GLDB adaptation to **higher resolution** land cover map (GLOBCOVER) in progress;
- > GLDB update with mean depth data for individual lakes:
- adding bathymetry data for large lakes;
- > adding data for reservoirs and salt lakes.

